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Plan for this Chapter

m We will first revisit the notions Turing-recognizable and
Turing-decidable and identify a connection between the two
concepts.

m Then we will get to know an important undecidable problem,
the halting problem.

m We show that it is Turing-recognizable. ..
® ... but not Turing-decidable.

m From these results we can conclude that there are languages
that are not Turing-recognizable.

m Some of the postponed results on the closure and decidability
properties of type 0 languages are direct implications our
findings.
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Reminder: Turing-recognizable and Turing-decidable

Definition (Turing-recognizable Language)

We call a language Turing-recognizable if some deterministic
Turing machine recognizes it.
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Reminder: Turing-recognizable and Turing-decidable

Definition (Turing-recognizable Language)

We call a language Turing-recognizable if some deterministic
Turing machine recognizes it.

A Turing machine that halts on all inputs (entering greject or
Gaccept) is @ decider. A decider that recognizes some language also
is said to decide the language.

Definition (Turing-decidable Language)

We call a language Turing-decidable (or decidable) if some
deterministic Turing machine decides it.
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Intuition

Are these two definitions meaningfully different?
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Intuition

Are these two definitions meaningfully different? Yes!

(Turing-)decidable:

———() accept
W —
————() reject
Turing-recognizable
————>() accept
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Intuition

Are these two definitions meaningfully different? Yes!

Case 2: wé¢ L
(Turing-)decidable:

———() accept
W —
———() reject
Turing-recognizable
————>() accept
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Connection Turing-recognizable and Turing-decidable (1)

Reminder: For language L, we write L do denote its complement.

Theorem (Decidable vs. Turing-recognizable)

A language L is decidable iff both L and L are Turing-recognizable.

(=): obvious (Why?)
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Connection Turing-recognizable and Turing-decidable (2)

Proof (continued).

(«=): Let M, be a DTM that recognizes L,
and let M; be a DTM that recognizes L.

The following algorithm decides L:

On a given input word w proceed as follows:
FORs:=1,2,3,...:
IF M, stops on w in s steps in the accept state:
ACCEPT
IF Mj stops on w in s steps in the accept state:
REJECT
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Connection Turing-recognizable and Turing-decidable (2)

Proof (continued).

(«=): Let M, be a DTM that recognizes L,
and let M; be a DTM that recognizes L.

The following algorithm decides L:

On a given input word w proceed as follows:
FORs:=1,2,3,...:
IF M, stops on w in s steps in the accept state:
ACCEPT
IF Mj stops on w in s steps in the accept state:
REJECT

Why don't we first entirely simulate M, on the input
and only afterwards M;?
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Example: Decidable # Known Algorithm

Decidability of L does not mean we know how to decide it:

m L = {n € N | there are n consecutive 7s
in the decimal representation of 7}.

Summar
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m L = {n € N | there are n consecutive 7s
in the decimal representation of 7}.

m L is decidable.

Summar



Turing-recognizable vs. decidable The Halting Problem H H

00000080 0000¢ A

Example: Decidable # Known Algorithm

Decidability of L does not mean we know how to decide it:

m L = {n € N | there are n consecutive 7s
in the decimal representation of 7}.
m L is decidable.

m There are either 7-sequences of arbitrary length in 7 (case 1)
or there is a maximal number ny of consecutive 7s (case 2).
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Example: Decidable # Known Algorithm

Decidability of L does not mean we know how to decide it:

m L = {n € N | there are n consecutive 7s
in the decimal representation of 7}.
m L is decidable.

m There are either 7-sequences of arbitrary length in 7 (case 1)
or there is a maximal number ny of consecutive 7s (case 2).

m Case 1: accept for all n
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Example: Decidable # Known Algorithm

Decidability of L does not mean we know how to decide it:

m L = {n € N | there are n consecutive 7s
in the decimal representation of 7}.

m L is decidable.

m There are either 7-sequences of arbitrary length in 7 (case 1)
or there is a maximal number ny of consecutive 7s (case 2).
m Case 1: accept for all n
m Case 2: accept if n < ng, otherwise reject



The Halting Problem H H
00000080 0000

Example: Decidable # Known Algorithm

Turing-recognizable vs. decidable

Decidability of L does not mean we know how to decide it:
m L = {n € N | there are n consecutive 7s
in the decimal representation of 7}.

m L is decidable.

m There are either 7-sequences of arbitrary length in 7 (case 1)
or there is a maximal number ny of consecutive 7s (case 2).

m Case 1: accept for all n
m Case 2: accept if n < ng, otherwise reject

m In both cases, we can decide the language.
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Example: Decidable # Known Algorithm

Decidability of L does not mean we know how to decide it:

m L = {n € N | there are n consecutive 7s
in the decimal representation of 7}.
m L is decidable.

m There are either 7-sequences of arbitrary length in 7 (case 1)
or there is a maximal number ny of consecutive 7s (case 2).

m Case 1: accept for all n
m Case 2: accept if n < ng, otherwise reject

m In both cases, we can decide the language.

m We just do not know what is the correct version
(and what is ng in case 2).
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The Halting Problem H
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Reminder: Encodings of Turing Machines

m We have seen how every deterministic Turing machine with
input alphabet {0,1} can be encoded as a word over {0,1}.
Can there be several words that encode the same DTM?
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Reminder: Encodings of Turing Machines

m We have seen how every deterministic Turing machine with
input alphabet {0,1} can be encoded as a word over {0,1}.
Can there be several words that encode the same DTM?

= Not every word over {0,1} corresponds to such an encoding.
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Reminder: Encodings of Turing Machines

m We have seen how every deterministic Turing machine with
input alphabet {0,1} can be encoded as a word over {0, 1}.
Can there be several words that encode the same DTM?

= Not every word over {0,1} corresponds to such an encoding.

m To define for every w € {0,1}" a corresponding TM, we use
an arbitrary fixed DTM M and define

M. — M’ if w is the encoding of some DTM M’
"I M otherwise
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Reminder: Encodings of Turing Machines

m We have seen how every deterministic Turing machine with
input alphabet {0,1} can be encoded as a word over {0,1}.
Can there be several words that encode the same DTM?

= Not every word over {0,1} corresponds to such an encoding.

m To define for every w € {0,1}" a corresponding TM, we use
an arbitrary fixed DTM M and define

M. — M’ if w is the encoding of some DTM M’
"I M otherwise

m M, = “Turing machine encoded by w"
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Halting Problem

Definition (Halting Problem)

The halting problem is the language

H = {w#x € {0,1,#}" | w,x € {0,1}",

M,, started on x terminates}

“Does the computation of the TM encoded by w halt on input x?"
“Does a given piece of code terminate on a given input?”
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The Halting Problem is Turing-recognizable

The halting problem H is Turing-recognizable. I

The following Turing machine U recognizes language H:

On input w#x:
@ If the input contains more than one # then reject.
@ Simulate M,, (the TM encoded by w) on input x.
Q If M, halts, accept.



The Halting Problem H
[e]e]e] lo}

The Halting Problem is Turing-recognizable

The halting problem H is Turing-recognizable. I

The following Turing machine U recognizes language H:

On input w#x:
@ If the input contains more than one # then reject.
@ Simulate M,, (the TM encoded by w) on input x.
Q If M, halts, accept.

What does U do if M,, does not halt on the input?
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The Halting Problem is Turing-recognizable

The halting problem H is Turing-recognizable. I

The following Turing machine U recognizes language H:

On input w#x:
@ If the input contains more than one # then reject.
@ Simulate M,, (the TM encoded by w) on input x.
Q If M, halts, accept.

What does U do if M,, does not halt on the input?

U is an example of a so-called universal Turing machine
which can simulate any other Turing machine
from the description of that machine.
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o

~

Questions?
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Undecidability

m If some language or problem is not Turing-decidable
then we call it undecidable.
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Undecidability

m If some language or problem is not Turing-decidable
then we call it undecidable.

m Intuitively, this means that for this problem there is no
algorithm that is correct and terminates on all inputs.

Summar
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Undecidability

m If some language or problem is not Turing-decidable
then we call it undecidable.

m Intuitively, this means that for this problem there is no
algorithm that is correct and terminates on all inputs.

m To establish the undeciability of the halting problem, we will
consider a situation where we run a Turing machine/algorithm
on its own encoding/source code.
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Undecidability

m If some language or problem is not Turing-decidable
then we call it undecidable.

m Intuitively, this means that for this problem there is no
algorithm that is correct and terminates on all inputs.

m To establish the undeciability of the halting problem, we will
consider a situation where we run a Turing machine/algorithm
on its own encoding/source code.

m We have seen something similar in the very first lecture. ..
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Uncomputable Problems?

Consider functions whose inputs are strings:

def program_returns_true_on_input(prog_code, input_str):

# returns True if prog_code run on input_str returns True
# returns False 1if not
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Uncomputable Problems?

Consider functions whose inputs are strings:
def program_returns_true_on_input(prog_code, input_str):

# returns True if prog_code run on input_str returns True
# returns False 1if not

def weird_program(prog_code):
if program_returns_true_on_input(prog_code, prog_code):
return False
else:
return True
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Uncomputable Problems?

Consider functions whose inputs are strings:
def program_returns_true_on_input(prog_code, input_str):

# returns True if prog_code run on input_str returns True
# returns False 1if not

def weird_program(prog_code):
if program_returns_true_on_input(prog_code, prog_code):
return False
else:
return True

What is the return value of weird program
if we run it on its own source code?
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Solution

m We can make a case distinction:
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m We can make a case distinction:

m Case 1: weird_program returns True on its own source.
Then weird_program returns False on its own source code.
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Solution

m We can make a case distinction:
m Case 1: weird_program returns True on its own source.
Then weird_program returns False on its own source code.
m Case 2: weird_program returns False on its own source.
Then weird_program returns True on its own source code.
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Solution

m We can make a case distinction:

m Case 1: weird_program returns True on its own source.
Then weird_program returns False on its own source code.

m Case 2: weird_program returns False on its own source.
Then weird_program returns True on its own source code.

m Contradiction in all cases, so weird program cannot exist.
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Solution

m We can make a case distinction:

m Case 1: weird_program returns True on its own source.
Then weird_program returns False on its own source code.

m Case 2: weird_program returns False on its own source.
Then weird_program returns True on its own source code.

m Contradiction in all cases, so weird program cannot exist.

m From the source we see that this can only be because
subroutine program _returns_true_on_input cannot exist.
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Solution

m We can make a case distinction:

m Case 1: weird_program returns True on its own source.
Then weird_program returns False on its own source code.

m Case 2: weird_program returns False on its own source.
Then weird_program returns True on its own source code.

m Contradiction in all cases, so weird program cannot exist.

m From the source we see that this can only be because
subroutine program _returns_true_on_input cannot exist.

m Overall, we have proven that there cannot be a program with
the behaviour described by the comments.
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Solution

m We can make a case distinction:

m Case 1: weird program returns True on its own source.
Then weird_program returns False on its own source code.

m Case 2: weird_program returns False on its own source.
Then weird_program returns True on its own source code.

m Contradiction in all cases, so weird program cannot exist.

m From the source we see that this can only be because
subroutine program _returns_true_on_input cannot exist.

m Overall, we have proven that there cannot be a program with
the behaviour described by the comments.

m For the undecidability of the halting problem, we will use an
analogous argument, only with Turing machines instead of
code and termination instead of return values.
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Undecidability of the Halting Problem (1)

Theorem (Undecidability of the Halting Problem)

The halting problem H is undecidable.
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Undecidability of the Halting Problem (1)

Theorem (Undecidability of the Halting Problem)

The halting problem H is undecidable.

Proof by contradiction: we assume that the halting problem H was
decidable and derive a contradiction.
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Undecidability of the Halting Problem (1)

Theorem (Undecidability of the Halting Problem)

The halting problem H is undecidable.

Proof by contradiction: we assume that the halting problem H was
decidable and derive a contradiction.

So assume H is decidable and let D be a DTM that decides it. ...
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Undecidability of the Halting Problem (2)

Proof (continued).

Construct the following new machine M that takes a word
x € {0,1}* as input:

© Execute D on the input x#x.

Q If it rejects: accept.

© Otherwise: enter an endless loop.
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Undecidability of the Halting Problem (2)

Proof (continued).
Construct the following new machine M that takes a word
x € {0,1}* as input:
© Execute D on the input x#x.
Q If it rejects: accept.
© Otherwise: enter an endless loop.
Let w be the encoding of M. How will M behave on input w?
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Undecidability of the Halting Problem (2)

Proof (continued).

Construct the following new machine M that takes a word
x € {0,1}* as input:
© Execute D on the input x#x.
Q If it rejects: accept.
© Otherwise: enter an endless loop.
Let w be the encoding of M. How will M behave on input w?

M run on w stops
iff D run on w#w rejects
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Undecidability of the Halting Problem (2)

Proof (continued).

Construct the following new machine M that takes a word
x € {0,1}* as input:
© Execute D on the input x#x.
Q If it rejects: accept.
© Otherwise: enter an endless loop.
Let w be the encoding of M. How will M behave on input w?
M run on w stops

iff D run on w#w rejects
iff wH#w & H
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Undecidability of the Halting Problem (2)

Proof (continued).

Construct the following new machine M that takes a word
x € {0,1}* as input:
© Execute D on the input x#x.
Q If it rejects: accept.
© Otherwise: enter an endless loop.
Let w be the encoding of M. How will M behave on input w?
M run on w stops
iff D run on w#w rejects
iff wH#w & H
iff M run on w does not stop (remember that w encodes M)

Contradiction! DTM M cannot exist.
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Undecidability of the Halting Problem (2)

Proof (continued).

Construct the following new machine M that takes a word
x € {0,1}* as input:
© Execute D on the input x#x.
Q If it rejects: accept.
© Otherwise: enter an endless loop.
Let w be the encoding of M. How will M behave on input w?
M run on w stops
iff D run on w#w rejects
iff wH#w & H
iff M run on w does not stop (remember that w encodes M)

Contradiction! DTM M cannot exist.
= DTM D cannot exist, thus H is not decidable.

]
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A Language that is not Turing-recognizable

We have the following results:

m A language L is decidable iff both L and L are
Turing-recognizable.

m The halting problem H is Turing-recognizable but not
decidable.

The complement H of the halting problem H is not
Turing-recognizable.
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Exercises

m True or false? There is a grammar that
generates H.

m True or false? Not all languages are of type 0.

Justify your answers.
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Reprise: Type-0 Languages
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Back to Chapter B11: Closure Properties

Intersection Union Complement Concatenation Star

Type 2 No Yes No Yes Yes
Type 0 Yes(?) Yes(1) No(3) Yes(1) Yes(1)
Proofs?

(1) proof via grammars, similar to context-free cases
(2) without proof
(3) proof in later chapters (part C)



Back to Chapter B11: Decidability

Word Emptiness  Equivalence Intersection
problem problem problem problem
Type 2 Yes Yes No No
Type 0 No(#) No(#) No(4) No(4)

Proofs?

(1) same argument we used for context-free languages

(2) because already undecidable for context-free languages
(3) without proof

(4) proofs in later chapters (part C)
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Answers to Old Questions

Closure properties:
m H is Turing-recognizable (and thus type 0) but not decidable.
~~ H is not Turing-recognizable, thus not type 0.

~ Type-0 languages are not closed under complement.

Decidability:
m H is type 0 but not decidable.
~ word problem for type-0 languages not decidable

~ emptiness, equivalence, intersection problem: later in exercises
(We are still missing some important results for this.)
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Questions?
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Summary

A language L is decidable iff both L and L are
Turing-recognizable.

The halting problem is the language

H={w#x € {0,1,#}" | w,x € {0,1}",

M,, started on x terminates}

The halting problem is Turing-recognizable but undecidable.

The complement language H is an example of a language that
is not even Turing-recognizable.
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