Theory of Computer Science
C2. The Halting Problem

Gabriele Roger

University of Basel

April 12, 2023

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023

1/27

Theory of Computer Science
April 12, 2023 — C2. The Halting Problem

C2.1 Turing-recognizable vs. decidable
C2.2 The Halting Problem H

C2.3 H is Undecidable

C2.4 Reprise: Type-0 Languages

C2.5 Summary

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 2/27

C2. The Halting Problem Turing-recognizable vs. decidable

C2.1 Turing-recognizable vs.
decidable

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 3 /27

C2. The Halting Problem Turing-recognizable vs. decidable

Plan for this Chapter

» We will first revisit the notions Turing-recognizable and
Turing-decidable and identify a connection between the two
concepts.

» Then we will get to know an important undecidable problem,
the halting problem.

> We show that it is Turing-recognizable. ..
» ... but not Turing-decidable.

» From these results we can conclude that there are languages
that are not Turing-recognizable.

» Some of the postponed results on the closure and decidability
properties of type 0 languages are direct implications our
findings.

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 4 /27

C2. The Halting Problem Turing-recognizable vs. decidable

Reminder: Turing-recognizable and Turing-decidable

Definition (Turing-recognizable Language)
We call a language Turing-recognizable if some deterministic
Turing machine recognizes it.

A Turing machine that halts on all inputs (entering greject or
Gaccept) is a decider. A decider that recognizes some language also
is said to decide the language.

Definition (Turing-decidable Language)
We call a language Turing-decidable (or decidable) if some
deterministic Turing machine decides it.

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023

5/

C2. The Halting Problem Turing-recognizable vs. decidable

Intuition

Are these two definitions meaningfully different? Yes!

(Turing-)decidable:

——>(0) accept
———(reject

Turing-recognizable

——>(0) accept

77

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023

6 /27

C2. The Halting Problem Turing-recognizable vs. decidable

Connection Turing-recognizable and Turing-decidable (1)

Reminder: For language L, we write L do denote its complement.

Theorem (Decidable vs. Turing-recognizable)
A language L is decidable iff both L and L are Turing-recognizable.

Proof.
(=): obvious (Why?)

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 7/27

C2. The Halting Problem Turing-recognizable vs. decidable

Connection Turing-recognizable and Turing-decidable (2)

Proof (continued).
(«): Let M, be a DTM that recognizes L,
and let M; be a DTM that recognizes L.

The following algorithm decides L:

On a given input word w proceed as follows:
FORs:=1,2,3,...:
IF M, stops on w in s steps in the accept state:
ACCEPT
IF Mg stops on w in s steps in the accept state:
REJECT

Why don't we first entirely simulate M, on the input
and only afterwards M;?

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 8 /27

C2. The Halting Problem Turing-recognizable vs. decidable

Example: Decidable # Known Algorithm

Decidability of L does not mean we know how to decide it:
» L= {n € N |there are n consecutive 7s
in the decimal representation of 7}.
> [is decidable.

» There are either 7-sequences of arbitrary length in 7 (case 1)
or there is a maximal number ny of consecutive 7s (case 2).

» Case 1: accept for all n
P> Case 2: accept if n < ng, otherwise reject

» In both cases, we can decide the language.

» We just do not know what is the correct version
(and what is ng in case 2).

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023

9

C2. The Halting Problem The Halting Problem H

C2.2 The Halting Problem H

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 10 / 27

C2. The Halting Problem The Halting Problem H

Reminder: Encodings of Turing Machines

P> We have seen how every deterministic Turing machine with
input alphabet {0,1} can be encoded as a word over {0, 1}.
Can there be several words that encode the same DTM?

» Not every word over {0, 1} corresponds to such an encoding.

> To define for every w € {0,1}" a corresponding TM, we use
an arbitrary fixed DTM M and define

M. — {I\/I’ if w is the encoding of some DTM M’

M otherwise

» M, = "“Turing machine encoded by w"

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 11 /27

C2. The Halting Problem The Halting Problem H

Halting Problem

Definition (Halting Problem)
The halting problem is the language

H = {w#x € {0,1,#}" | w,x € {0,1}",

M,, started on x terminates}

“Does the computation of the TM encoded by w halt on input x?"
“Does a given piece of code terminate on a given input?”

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 12 /27

C2. The Halting Problem The Halting Problem H

The Halting Problem is Turing-recognizable

Theorem
The halting problem H is Turing-recognizable.

The following Turing machine U recognizes language H:
On input w#x:
@ If the input contains more than one # then reject.
@ Simulate M,, (the TM encoded by w) on input x.
Q If M, halts, accept.

What does U do if M,, does not halt on the input?

U is an example of a so-called universal Turing machine
which can simulate any other Turing machine
from the description of that machine.

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 13 /27

C2. The Halting Problem H is Undecidable

C2.3 H is Undecidable

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 14 /27

C2. The Halting Problem H is Undecidable

Undecidability

> If some language or problem is not Turing-decidable
then we call it undecidable.

» Intuitively, this means that for this problem there is no
algorithm that is correct and terminates on all inputs.

» To establish the undeciability of the halting problem, we will
consider a situation where we run a Turing machine/algorithm
on its own encoding/source code.

> We have seen something similar in the very first lecture. ..

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023

15

C2. The Halting Problem H is Undecidable

Uncomputable Problems?

Consider functions whose inputs are strings:
def program_returns_true_on_input(prog_code, input_str):

returns True @f prog_code run on input_str returns True
returns False 1if not

def weird_program(prog_code) :
if program_returns_true_on_input(prog_code, prog_code):
return False
else:
return True

What is the return value of weird program
if we run it on its own source code?

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 16 / 27

C2. The Halting Problem H is Undecidable

Solution

» We can make a case distinction:

» Case 1: weird program returns True on its own source.
Then weird_program returns False on its own source code.

» Case 2: weird program returns False on its own source.
Then weird_program returns True on its own source code.

» Contradiction in all cases, so weird program cannot exist.

» From the source we see that this can only be because
subroutine program_returns_true_on_input cannot exist.

» Overall, we have proven that there cannot be a program with
the behaviour described by the comments.

» For the undecidability of the halting problem, we will use an
analogous argument, only with Turing machines instead of
code and termination instead of return values.

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 17 /27

C2. The Halting Problem H is Undecidable

Undecidability of the Halting Problem (1)

Theorem (Undecidability of the Halting Problem)
The halting problem H is undecidable.

Proof.
Proof by contradiction: we assume that the halting problem H was
decidable and derive a contradiction.

So assume H is decidable and let D be a DTM that decides it. ...

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 18 / 27

C2. The Halting Problem H is Undecidable

Undecidability of the Halting Problem (2)

Proof (continued).
Construct the following new machine M that takes a word
x € {0,1}* as input:
© Execute D on the input x#x.
@ If it rejects: accept.
© Otherwise: enter an endless loop.
Let w be the encoding of M. How will M behave on input w?
M run on w stops
iff D run on w#w rejects
iff wH#w ¢ H
iff M run on w does not stop (remember that w encodes M)

Contradiction! DTM M cannot exist.
= DTM D cannot exist, thus H is not decidable. O

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 19 /27

C2. The Halting Problem H is Undecidable

A Language that is not Turing-recognizable

We have the following results:

» A language L is decidable iff both L and L are
Turing-recognizable.

» The halting problem H is Turing-recognizable but not
decidable.
Corollary

The complement H of the halting problem H is not
Turing-recognizable.

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 20 / 27

C2. The Halting Problem H is Undecidable

Exercises

P> True or false? There is a grammar that

%
generates H.)
4

> True or false? Not all languages are of type 0.

Justify your answers.

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 21 /27

C2. The Halting Problem Reprise: Type-0 Languages

C2.4 Reprise: Type-0 Languages

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 22 /27

C2. The Halting Problem

Back to Chapter B11: Closure Properties

Reprise: Type-0 Languages

Intersection Union Complement Concatenation Star

Type 2 No Yes No Yes Yes
Type 0 Yes®® Yes(1) No®) Yes(1) Yes(1)
Proofs?

(1) proof via grammars, similar to context-free cases
(2) without proof
(3) proof in later chapters (part C)

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 23 /27

C2. The Halting Problem

Back to Chapter B11: Decidability

Reprise: Type-0 Languages

Word Emptiness Equivalence Intersection
problem problem problem problem
Type 2 Yes Yes No No
Type 0 No(#) No(4) No(#) No(4)

Proofs?

(1) same argument we used for context-free languages

(2) because already undecidable for context-free languages
(3) without proof

(4) proofs in later chapters (part C)

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 24 /27

C2. The Halting Problem Reprise: Type-0 Languages

Answers to Old Questions

Closure properties:
» H is Turing-recognizable (and thus type 0) but not decidable.
~~ H is not Turing-recognizable, thus not type 0.

~+ Type-0 languages are not closed under complement.

Decidability:
> H is type 0 but not decidable.
~ word problem for type-0 languages not decidable

~ emptiness, equivalence, intersection problem: later in exercises
(We are still missing some important results for this.)

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023

25

C2. The Halting Problem Summary

C2.5 Summary

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 26 /27

C2. The Halting Problem Summary

Summary

» A language L is decidable iff both L and L are
Turing-recognizable.

» The halting problem is the language

H={w#x € {0,1,#}" | w,x € {0,1}",

M,, started on x terminates}

» The halting problem is Turing-recognizable but undecidable.

» The complement language H is an example of a language that
is not even Turing-recognizable.

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023 27 /27

	Turing-recognizable vs. decidable
	

	The Halting Problem H
	

	H is Undecidable
	

	Reprise: Type-0 Languages
	

	Summary
	

