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C2. The Halting Problem Turing-recognizable vs. decidable

C2.1 Turing-recognizable vs.
decidable
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C2. The Halting Problem Turing-recognizable vs. decidable

Plan for this Chapter

» We will first revisit the notions Turing-recognizable and
Turing-decidable and identify a connection between the two
concepts.

» Then we will get to know an important undecidable problem,
the halting problem.

> We show that it is Turing-recognizable. ..
» ... but not Turing-decidable.

» From these results we can conclude that there are languages
that are not Turing-recognizable.

» Some of the postponed results on the closure and decidability
properties of type 0 languages are direct implications our
findings.
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C2. The Halting Problem Turing-recognizable vs. decidable

Reminder: Turing-recognizable and Turing-decidable

Definition (Turing-recognizable Language)
We call a language Turing-recognizable if some deterministic
Turing machine recognizes it.

A Turing machine that halts on all inputs (entering greject or
Gaccept) is a decider. A decider that recognizes some language also
is said to decide the language.

Definition (Turing-decidable Language)
We call a language Turing-decidable (or decidable) if some
deterministic Turing machine decides it.

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023

5/



C2. The Halting Problem Turing-recognizable vs. decidable

Intuition

Are these two definitions meaningfully different? Yes!

(Turing-)decidable:

——>(0) accept
———( reject

Turing-recognizable

——>(0) accept

77
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C2. The Halting Problem Turing-recognizable vs. decidable

Connection Turing-recognizable and Turing-decidable (1)

Reminder: For language L, we write L do denote its complement.

Theorem (Decidable vs. Turing-recognizable)
A language L is decidable iff both L and L are Turing-recognizable.

Proof.
(=): obvious (Why?)
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C2. The Halting Problem Turing-recognizable vs. decidable

Connection Turing-recognizable and Turing-decidable (2)

Proof (continued).
(«): Let M, be a DTM that recognizes L,
and let M; be a DTM that recognizes L.

The following algorithm decides L:

On a given input word w proceed as follows:
FORs:=1,2,3,...:
IF M, stops on w in s steps in the accept state:
ACCEPT
IF Mg stops on w in s steps in the accept state:
REJECT

Why don't we first entirely simulate M, on the input
and only afterwards M;?
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C2. The Halting Problem Turing-recognizable vs. decidable

Example: Decidable # Known Algorithm

Decidability of L does not mean we know how to decide it:
» L= {n € N |there are n consecutive 7s
in the decimal representation of 7}.
> [ is decidable.

» There are either 7-sequences of arbitrary length in 7 (case 1)
or there is a maximal number ny of consecutive 7s (case 2).

» Case 1: accept for all n
P> Case 2: accept if n < ng, otherwise reject

» In both cases, we can decide the language.

» We just do not know what is the correct version
(and what is ng in case 2).
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C2. The Halting Problem The Halting Problem H

C2.2 The Halting Problem H
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C2. The Halting Problem The Halting Problem H

Reminder: Encodings of Turing Machines

P> We have seen how every deterministic Turing machine with
input alphabet {0,1} can be encoded as a word over {0, 1}.
Can there be several words that encode the same DTM?

» Not every word over {0, 1} corresponds to such an encoding.

> To define for every w € {0,1}" a corresponding TM, we use
an arbitrary fixed DTM M and define

M. — {I\/I’ if w is the encoding of some DTM M’

M otherwise

» M, = "“Turing machine encoded by w"
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C2. The Halting Problem The Halting Problem H

Halting Problem

Definition (Halting Problem)
The halting problem is the language

H = {w#x € {0,1,#}" | w,x € {0,1}",

M,, started on x terminates}

“Does the computation of the TM encoded by w halt on input x?"
“Does a given piece of code terminate on a given input?”
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C2. The Halting Problem The Halting Problem H

The Halting Problem is Turing-recognizable

Theorem
The halting problem H is Turing-recognizable.

The following Turing machine U recognizes language H:
On input w#x:
@ If the input contains more than one # then reject.
@ Simulate M,, (the TM encoded by w) on input x.
Q If M, halts, accept.

What does U do if M,, does not halt on the input?

U is an example of a so-called universal Turing machine
which can simulate any other Turing machine
from the description of that machine.
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C2. The Halting Problem H is Undecidable

C2.3 H is Undecidable
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C2. The Halting Problem H is Undecidable

Undecidability

> If some language or problem is not Turing-decidable
then we call it undecidable.

» Intuitively, this means that for this problem there is no
algorithm that is correct and terminates on all inputs.

» To establish the undeciability of the halting problem, we will
consider a situation where we run a Turing machine/algorithm
on its own encoding/source code.

> We have seen something similar in the very first lecture. ..

Gabriele Roger (University of Basel) Theory of Computer Science April 12, 2023

15



C2. The Halting Problem H is Undecidable

Uncomputable Problems?

Consider functions whose inputs are strings:
def program_returns_true_on_input(prog_code, input_str):

# returns True @f prog_code run on input_str returns True
# returns False 1if not

def weird_program(prog_code) :
if program_returns_true_on_input(prog_code, prog_code):
return False
else:
return True

What is the return value of weird program
if we run it on its own source code?
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C2. The Halting Problem H is Undecidable

Solution

» We can make a case distinction:

» Case 1: weird program returns True on its own source.
Then weird_program returns False on its own source code.

» Case 2: weird program returns False on its own source.
Then weird_program returns True on its own source code.

» Contradiction in all cases, so weird program cannot exist.

» From the source we see that this can only be because
subroutine program_returns_true_on_input cannot exist.

» Overall, we have proven that there cannot be a program with
the behaviour described by the comments.

» For the undecidability of the halting problem, we will use an
analogous argument, only with Turing machines instead of
code and termination instead of return values.
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C2. The Halting Problem H is Undecidable

Undecidability of the Halting Problem (1)

Theorem (Undecidability of the Halting Problem)
The halting problem H is undecidable.

Proof.
Proof by contradiction: we assume that the halting problem H was
decidable and derive a contradiction.

So assume H is decidable and let D be a DTM that decides it. ...
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C2. The Halting Problem H is Undecidable

Undecidability of the Halting Problem (2)

Proof (continued).
Construct the following new machine M that takes a word
x € {0,1}* as input:
© Execute D on the input x#x.
@ If it rejects: accept.
© Otherwise: enter an endless loop.
Let w be the encoding of M. How will M behave on input w?
M run on w stops
iff D run on w#w rejects
iff wH#w ¢ H
iff M run on w does not stop (remember that w encodes M)

Contradiction! DTM M cannot exist.
= DTM D cannot exist, thus H is not decidable. O
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C2. The Halting Problem H is Undecidable

A Language that is not Turing-recognizable

We have the following results:

» A language L is decidable iff both L and L are
Turing-recognizable.

» The halting problem H is Turing-recognizable but not
decidable.
Corollary

The complement H of the halting problem H is not
Turing-recognizable.
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C2. The Halting Problem H is Undecidable

Exercises

P> True or false? There is a grammar that

%
generates H. )
4

> True or false? Not all languages are of type 0.

Justify your answers.
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C2. The Halting Problem Reprise: Type-0 Languages

C2.4 Reprise: Type-0 Languages
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C2. The Halting Problem

Back to Chapter B11: Closure Properties

Reprise: Type-0 Languages

Intersection Union Complement Concatenation Star

Type 2 No Yes No Yes Yes
Type 0 Yes®® Yes(1) No®) Yes(1) Yes(1)
Proofs?

(1) proof via grammars, similar to context-free cases
(2) without proof
(3) proof in later chapters (part C)
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C2. The Halting Problem

Back to Chapter B11: Decidability

Reprise: Type-0 Languages

Word Emptiness  Equivalence Intersection
problem problem problem problem
Type 2 Yes Yes No No
Type 0 No(#) No(4) No(#) No(4)

Proofs?

(1) same argument we used for context-free languages

(2) because already undecidable for context-free languages
(3) without proof

(4) proofs in later chapters (part C)
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C2. The Halting Problem Reprise: Type-0 Languages

Answers to Old Questions

Closure properties:
» H is Turing-recognizable (and thus type 0) but not decidable.
~~ H is not Turing-recognizable, thus not type 0.

~+ Type-0 languages are not closed under complement.

Decidability:
> H is type 0 but not decidable.
~ word problem for type-0 languages not decidable

~ emptiness, equivalence, intersection problem: later in exercises
(We are still missing some important results for this.)
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C2. The Halting Problem Summary

C2.5 Summary
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C2. The Halting Problem Summary

Summary

» A language L is decidable iff both L and L are
Turing-recognizable.

» The halting problem is the language

H={w#x € {0,1,#}" | w,x € {0,1}",

M,, started on x terminates}

» The halting problem is Turing-recognizable but undecidable.

» The complement language H is an example of a language that
is not even Turing-recognizable.
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