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Overview: Course

contents of this course:

A.

background v/
> mathematical foundations and proof techniques

. automata theory and formal languages v/

> What is a computation?

Turing computability

> What can be computed at all?
complexity theory

> What can be computed efficiently?

more computability theory
> Other models of computability



Main Question

Main question in this part of the course:

What can be computed
by a computer?
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Algorithms

m Informally, an algorithm is a collection of simple instructions
for carrying out some task.

m Long history in mathematics since ancient times: descriptions
of algorithms e. g. for finding prime numbers or the greatest
common divisor.

m A formal notion of an algorithm itself was not defined until
the 20th century.
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Hilbert's 10th Problem

Around 1900 David Hilbert (German mathematician) formulated
23 mathematical problems as challenge for the 20th century.

Hilbert’s 10th problem

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients:

To devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.
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Hilbert's 10th Problem

Around 1900 David Hilbert (German mathematician) formulated
23 mathematical problems as challenge for the 20th century.

Hilbert’s 10th problem

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients:

To devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.

What does this mean?
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Diophantine Equations

m A polynomial is a sum of terms where each term is a product
of a constant (the coefficient) and certain variables.
e.g. 6x3yz% +3xy? — x3 - 10
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Diophantine Equations

m A polynomial is a sum of terms where each term is a product
of a constant (the coefficient) and certain variables.
e.g. 6x3yz% +3xy? — x3 - 10

m A polynomial equation is an equation p = 0, where p is a
polynmial. A solutions of the equation is called a root of p.
e.g. 6x3yz2 +3xy?> —x3 —10 has a root x =5,y = 3,z = 0.
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Diophantine Equations

m A polynomial is a sum of terms where each term is a product
of a constant (the coefficient) and certain variables.
e.g. 6x3yz% +3xy? — x3 - 10

m A polynomial equation is an equation p = 0, where p is a
polynmial. A solutions of the equation is called a root of p.
e.g. 6x3yz2 +3xy?> —x3 —10 has a root x =5,y = 3,z = 0.

m Diophantine equations are polynomial equations, where only

integral roots (assigning only integer values to the variables)
count as solutions.
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Hilbert's 10th Problem

Hilbert's 10th problem

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients:

To devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.

1IF" Specify an algorithm that takes a polynomial
with integer coefficients as input and
outputs whether it has an integral root.
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Hilbert's 10th Problem

Hilbert's 10th problem

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients:

To devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.

1IF" Specify an algorithm that takes a polynomial
with integer coefficients as input and
outputs whether it has an integral root.

There is no such algorithm!
(implication of Matiyasevich's theorem from 1970)
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Questions

o
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Questions?
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Formal Notion of Algorithm?

m What is an algorithm?
m intuitive model of algorithm (cookbook recipe)
m vs. algorithm in modern programming language
m vs. formal mathematical models
m Proving that no algorithm exists requires
a clear notion of algorithm.
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Church-Turing Thesis

Church-Turing Thesis

All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

m cannot be proven (why not?)
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Church-Turing Thesis

All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

m cannot be proven (why not?)

m but there is significant evidence such as equivalence of TMs
and different register machines:
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Church-Turing Thesis

All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

m cannot be proven (why not?)

m but there is significant evidence such as equivalence of TMs
and different register machines:

m Counter machine: concept of registers
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Church-Turing Thesis

Church-Turing Thesis

All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

m cannot be proven (why not?)
m but there is significant evidence such as equivalence of TMs
and different register machines:

m Counter machine: concept of registers
m Random-access machine (RAM): adds indirect addressing
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Church-Turing Thesis

Church-Turing Thesis

All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

m cannot be proven (why not?)

m but there is significant evidence such as equivalence of TMs
and different register machines:
m Counter machine: concept of registers
m Random-access machine (RAM): adds indirect addressing
m Random-access stored-program machines: related to the von

Neumann architecture (very close to modern computer
systems)
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What about the Infinite Tape?

Turing Machines have access to infinite storage.

Computer systems do not.

However: A halting (in particular: accepting) computation of
a TM can only use a finite part of the tape.

If a problem is undecidable, we cannot solve it with a
computer, no matter how much memory we provide.
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Turing Completeness

Church-Turing Thesis

All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

Vice versa:

We say that a programming language is Turing-complete to
express that it can compute everything a Turing machine can.

m We can show Turing completeness by showing that with the
programming language we can simulate any Turing machine.
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Back to Hilbert's Problem

The corresponding formal problem (= language) is

D = {p | p is a polynomial with an integral root}
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Back to Hilbert's Problem

The corresponding formal problem (= language) is

D = {p | p is a polynomial with an integral root}

Formal way to say that “there is no algorithm for this problem”:

D is not Turing-decidable.
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Encoding



10th Problem Church-Turing Thesis Encoding 5”,”””"”

YOO 0O O@000000000000

Finite Structures as Strings

m Turing machines take words (= strings) as input and can only
represent strings on their tape.
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Finite Structures as Strings

m Turing machines take words (= strings) as input and can only
represent strings on their tape.
m Is this a limitation?
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Finite Structures as Strings

m Turing machines take words (= strings) as input and can only
represent strings on their tape.
m Is this a limitation?
= Not really!
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Finite Structures as Strings

m Turing machines take words (= strings) as input and can only
represent strings on their tape.
m Is this a limitation?

= Not really!
m Computers also internally operate on binary numbers
(words over {0,1}).
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Finite Structures as Strings

m Turing machines take words (= strings) as input and can only
represent strings on their tape.
m Is this a limitation?

= Not really!

m Computers also internally operate on binary numbers
(words over {0,1}).

B We just need to define how a string encodes a certain
structure e. g. how does a file of Os and 1s specify an image?



10th Problem Ch 1-| g Thesis Encoding

O@000000000000

Finite Structures as Strings

m Turing machines take words (= strings) as input and can only
represent strings on their tape.
m Is this a limitation?

= Not really!
m Computers also internally operate on binary numbers
(words over {0,1}).
B We just need to define how a string encodes a certain
structure e. g. how does a file of Os and 1s specify an image?
m We will have a look at two examples:
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Finite Structures as Strings

m Turing machines take words (= strings) as input and can only
represent strings on their tape.
m Is this a limitation?
= Not really!
m Computers also internally operate on binary numbers
(words over {0,1}).
B We just need to define how a string encodes a certain

structure e. g. how does a file of Os and 1s specify an image?
m We will have a look at two examples:

m Example 1: Encoding of pairs of numbers
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Finite Structures as Strings

m Turing machines take words (= strings) as input and can only
represent strings on their tape.
m Is this a limitation?
= Not really!

m Computers also internally operate on binary numbers
(words over {0,1}).
B We just need to define how a string encodes a certain
structure e. g. how does a file of Os and 1s specify an image?
m We will have a look at two examples:
m Example 1: Encoding of pairs of numbers
m Example 2: Encoding of Turing machines
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Encoding and Decoding: Binary Encode

Consider the function encode : N% — Np with:

1
encode(x,y) := (X * }2/ * ) + x
m encode is known as the Cantor pairing function
m encode is computable

B encode is bijective

x=0 x=1 x=2 x=3 x=4
y=0 0 2 5 9 14
y=1 1 4 8 13 19
y=2 3 7 12 18 25
y=3 6 11 17 24 32
y=4 10 16 23 31 40
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Encoding and Decoding: Binary Decode

Consider the inverse functions
decode; : Ny — Ny and decode; : Ny — Ny of encode:

decode; (encode(x,y)) = x
decode;(encode(x,y)) =y

m decode; and decode, are computable
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Turing Machines as Inputs

m We will at some point consider problems that have Turing
machines as their input.

~> “programs that have programs as input”:
cf. compilers, interpreters, virtual machines, etc.
m We have to think about how we can encode
arbitrary Turing machines as words over a fixed alphabet.
m We use the binary alphabet ¥ = {0, 1}.
m As an intermediate step we first encode over the alphabet
Y ={0,1,#}.
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Encoding a Turing Machine as a Word (1)

Step 1: encode a Turing machine as a word over {0, 1, #}

Reminder: Turing machine M = (Q, %, T, 6, o, Gaccept Greject)

Idea:

input alphabet ¥ should always be {0,1}

enumerate states in @ and symbols in [

and consider them as numbers 0,1,2, ...

blank symbol always receives number 2

start state always receives number 0, accept state number 1
and reject state number 2

(we can special-case machines where the start state is the accept or reject state)
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Encoding a Turing Machine as a Word (1)

Step 1: encode a Turing machine as a word over {0, 1, #}

Reminder: Turing machine M = (Q, %, T, 6, o, Gaccept Greject)

Idea:

input alphabet ¥ should always be {0,1}

enumerate states in @ and symbols in [

and consider them as numbers 0,1,2, ...

blank symbol always receives number 2

start state always receives number 0, accept state number 1
and reject state number 2

(we can special-case machines where the start state is the accept or reject state)

Then it is sufficient to only encode § explicitly:

Q: all states mentioned in the encoding of §
N=4{0,1,0, a3, as,...,ak}, where k is the largest symbol
number mentioned in the d-rules
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Encoding a Turing Machine as a Word (2)

encode the rules:

m Let 9(qi,a;) = (gi,ay, D) be a rule in 4,
where the indices i, i/, j, j/ correspond to the enumeration of
states/symbols and D € {L,R}.
m encode this rule as
Wi j il j'\D = #4bin()#bin(j)#bin(i")#bin(j")#bin(m),
0 fD=1L
1 ifD=R

m For every rule in §, we obtain one such word.

where m =

m All of these words in sequence (in arbitrary order)
encode the Turing machine.
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Encodlng a Turing Machine as a Word (3)

Step 2: transform into word over {0, 1} with mapping

0+ 00
1—01
#— 11

Turing machine can be reconstructed from its encoding.
How?
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Encoding a Turing Machine as a Word (4)

Example (step 1)

9(qo, a3) = (g3, a2, R) becomes ##0#11#11#10#1
0(g3,a1) = (g1, a0, L) becomes ##11#1#1#0#0

Example (step 2)

#HO#11#11#10#1## 1 1#1#1#0#0
1111001101011101011101001101111101011101110111001100
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Encoding a Turing Machine as a Word (4)

Example (step 1)

3(qo, a3) = (g3, a2, R) becomes ##0#11#11#10#1
0(g3,a1) = (g1, a0, L) becomes ##11#1#1#0#0

Example (step 2)

#HO#11#11#10#1## 1 1#1#1#0#0
1111001101011101011101001101111101011101110111001100
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Encoding a Turing Machine as a Word (4)

Example (step 1)

9(qo, a3) = (g3, a2, R) becomes ##0#11#11#10#1
0(g3,a1) = (g1, a0, L) becomes ##11#1#1#0#0

Example (step 2)

#HO#11#11#10#1## 1 1#1#1#0#0
1111001101011101011101001101111101011101110111001100
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Encoding a Turing Machine as a Word (4)

Example (step 1)

9(qo, a3) = (g3, a2, R) becomes ##0#11#11#10#1
0(g3,a1) = (g1, a0, L) becomes ##11#1#1#0#0

Example (step 2)

#HO#11#11#10#1## 1 1#1#1#0#0
1111001101011101011101001101111101011101110111001100
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Encoding a Turing Machine as a Word (4)

Example (step 1)

5(qo, a3) = (g3, a2, R) becomes ##0#11#11#10#1
0(g3,a1) = (g1, a0, L) becomes ##11#1#1#0#0

Example (step 2)

#HO#11#11#10#1## 1 1#1#1#0#0
1111001101011101011101001101111101011101110111001100
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Encoding a Turing Machine as a Word (4)

Example (step 1)

9(qo, a3) = (g3, a2, R) becomes ##0#11#11#10#1
0(g3,a1) = (g1, a0, L) becomes ##11#1#1#0#0

Example (step 2)

#HO#11#11#10#1## 1 1#1#1#0#0
1111001101011101011101001101111101011101110111001100




Hilbert's 10th Problem Church-Turing Thesis Encoding Summary

0000000080000 0

Encoding a Turing Machine as a Word (4)

Example (step 1)

9(qo, a3) = (g3, a2, R) becomes ##0#11#11#10#1
0(g3,a1) = (g1, a0, L) becomes ##11#1#1#0#0

Example (step 2)

#HO#11#11#10#1## 1 1#1#1#0#0
1111001101011101011101001101111101011101110111001100
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Encoding a Turing Machine as a Word (4)

Example (step 1)

9(qo, a3) = (g3, a2, R) becomes ##0#11#11#10#1
0(g3,a1) = (g1, a0, L) becomes ##11#1#1#0#0

Example (step 2)

#HO#11#11#10#1## 1 1#1#1#0#0
1111001101011101011101001101111101011101110111001100
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Encoding a Turing Machine as a Word (4)

Example (step 1)

9(qo, a3) = (g3, a2, R) becomes ##0#11#11#10#1
0(g3,a1) = (g1, a0, L) becomes ##11#1#1#0#0

Example (step 2)

#HO#11#11#10#1## 1 1#1#1#0#0
1111001101011101011101001101111101011101110111001100
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Encoding a Turing Machine as a Word (4)

Example (step 1)

9(qo, a3) = (g3, a2, R) becomes ##0#11#11#10#1
0(g3,a1) = (g1, a0, L) becomes ##11#1#1#0#0

Example (step 2)

#HO#11#11#10#1## 1 1#1#1#0#0
1111001101011101011101001101111101011101110111001100
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Encoding a Turing Machine as a Word (4)

Example (step 1)

9(qo, a3) = (g3, a2, R) becomes ##0#11#11#10#1
0(g3,a1) = (g1, a0, L) becomes ##11#1#1#0#0

Example (step 2)

#HO#11#11#10#1## 1 1#1#1#0#0
1111001101011101011101001101111101011101110111001100
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Exercise: Encoding of TMs (slido)

What would be the encoding of a transition )
0(qo, a0) = (g1, a2, L) as word over {0,1}? 2
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Turing Machine Encoded by a Word

goal: function that maps any word in {0,1}* to a Turing machine

problem: not all words in {0,1}* are encodings of a Turing machine

solution: Let M be an arbitrary fixed deterministic Turing machine
(for example one that always immediately stops). Then:

Definition (Turing Machine Encoded by a Word)

For all w € {0, 1}*:

M. — M’ if w is the encoding of some DTM M’
Y I M otherwise
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Notation for Encoding

m Most of the time, we will not consider a particular encoding of
non-string objects.

m For a single object O, we will just write {O) to denote some
suitable encoding of O as a string.

m For several objects Oy, ..., O,, we write (O1,..., Op) for
their encoding into a single string.

m In the high-level description of a TM we can refer to them as
the objects they are because on the lower level the TM can be
programmed to handle the encoded representation accordingly.
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Example

L={{G) | G is a connected undirected graph}
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Example

L={{G) | G is a connected undirected graph}

We describe a TM that recognizes L:
On input {G)), the encoding of a undirected graph G:
@ Select the first node of G and mark it.

@ Repeat until no more nodes are marked:
For each node in G, mark it if it is adjacent to a node that is
already marked.

© Scan all the nodes of G to determine whether they are all
marked. If yes, accept, otherwise reject.
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Example

L={{G) | G is a connected undirected graph}

We describe a TM that recognizes L:
On input {G)), the encoding of a undirected graph G:
@ Select the first node of G and mark it.

@ Repeat until no more nodes are marked:
For each node in G, mark it if it is adjacent to a node that is
already marked.

© Scan all the nodes of G to determine whether they are all
marked. If yes, accept, otherwise reject.

Implicit (lower-level detail): If the input does not encode an
undirected graph, directly reject.
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Questions

Questions?
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Summary

® main question: what can a computer compute?

m approach: investigate formal models of computation
— deterministic Turing machines

m Based on the (existing evidence for the) Church-Turing thesis,
we will describe the behaviour of Turing machines on a higher
abstraction level (such as pseudo-code).

m The formal restriction of TMs to strings is not a practical
limitation but can be handled with suitable encodings.



	Hilbert's 10th Problem
	

	Church-Turing Thesis
	

	Encoding
	

	Summary
	


