
Theory of Computer Science
B12. Type-1 and Type-0 Languages: Closure & Decidability

Gabriele Röger

University of Basel

April 5, 2023

Turing Machines vs. Grammars Closure and Decidability Summary

Turing Machines vs. Grammars

Turing Machines vs. Grammars Closure and Decidability Summary

Turing Machines

We have seen several variants of Turing machines:

Deterministic TM with head movements left or right

Deterministic TM with head movements left, right or neutral

Multitape Turing machines

Nondeterministic Turing machines

All variants recognize the same languages.

We mentioned earlier that we can relate Turing machines to the
Type-1 and Type-0 languages.

Turing Machines vs. Grammars Closure and Decidability Summary

Turing Machines

We have seen several variants of Turing machines:

Deterministic TM with head movements left or right

Deterministic TM with head movements left, right or neutral

Multitape Turing machines

Nondeterministic Turing machines

All variants recognize the same languages.

We mentioned earlier that we can relate Turing machines to the
Type-1 and Type-0 languages.

Turing Machines vs. Grammars Closure and Decidability Summary

Reminder: Context-sensitive Grammar

Type-1 languages are also called context-sensitive languages.

Definition (Context-sensitive Grammar)

A context-sensitive grammar is a 4-tuple ⟨V ,Σ,R,S⟩ with
V finite set of variables (nonterminal symbols)

Σ finite alphabet of terminal symbols with V ∩ Σ = ∅
R ⊆ (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗ finite set of rules,
where all rules are of the form αBγ → αβγ
with B ∈ V and α, γ ∈ (V ∪ Σ)∗ and β ∈ (V ∪ Σ)+.
Exception: S → ε is allowed if S never occurs on the
right-hand side of a rule.

S ∈ V start variable.

Turing Machines vs. Grammars Closure and Decidability Summary

One Automata Model for Two Grammar Types?

Don’t we need
different automata models for
context-sensitive and Type-0

languages?

Picture courtesy of stockimages / FreeDigitalPhotos.net

Turing Machines vs. Grammars Closure and Decidability Summary

Linear Bounded Automata: Idea

Linear bounded automata are NTMs that may only use
the part of the tape occupied by the input word.

one way of formalizing this: NTMs where blank symbol
may never be replaced by a different symbol

Turing Machines vs. Grammars Closure and Decidability Summary

Linear Bounded Turing Machines: Definition

Definition (Linear Bounded Automata)

An NTM M = ⟨Q,Σ, Γ, δ, q0, qaccept, qreject⟩
is called a linear bounded automaton (LBA)
if for all q ∈ Q \ {qaccept, qreject} and all transition rules
⟨q′, c, y⟩ ∈ δ(q,□) we have c = □.

Turing Machines vs. Grammars Closure and Decidability Summary

LBAs Recognize Type-1 Languages

Theorem

The languages that can be recognized by linear bounded automata
are exactly the context-sensitive (type-1) languages.

Without proof.

proof sketch for grammar ⇒ NTM direction:

computation of the NTM follows the production of the word
in the grammar in opposite order

accept when only the start symbol (and blanks)
are left on the tape

because the language is context-sensitive,
we never need additional space on the tape
(empty word needs special treatment)

Turing Machines vs. Grammars Closure and Decidability Summary

LBAs Recognize Type-1 Languages

Theorem

The languages that can be recognized by linear bounded automata
are exactly the context-sensitive (type-1) languages.

Without proof.

proof sketch for grammar ⇒ NTM direction:

computation of the NTM follows the production of the word
in the grammar in opposite order

accept when only the start symbol (and blanks)
are left on the tape

because the language is context-sensitive,
we never need additional space on the tape
(empty word needs special treatment)

Turing Machines vs. Grammars Closure and Decidability Summary

NTMs Recognize Type-0 Languages

Theorem

The languages that can be recognized by nondeterministic
Turing machines are exactly the type-0 languages.

Without proof.

proof sketch for grammar ⇒ NTM direction:

analogous to previous proof

for grammar rules w1 → w2 with |w1| > |w2|,
we must “insert” symbols into the existing tape content;
this is a bit tedious, but not very difficult

Turing Machines vs. Grammars Closure and Decidability Summary

NTMs Recognize Type-0 Languages

Theorem

The languages that can be recognized by nondeterministic
Turing machines are exactly the type-0 languages.

Without proof.

proof sketch for grammar ⇒ NTM direction:

analogous to previous proof

for grammar rules w1 → w2 with |w1| > |w2|,
we must “insert” symbols into the existing tape content;
this is a bit tedious, but not very difficult

Turing Machines vs. Grammars Closure and Decidability Summary

What about the Deterministic Variants?

We know that DTMs and NTMs recognize the same languages.
Hence:

Corollary

The Turing-recognizable languages are exactly the Type-0
languages.

Note: It is an open problem whether deterministic LBAs
Note: can recognize exactly the type-1 languages.

Turing Machines vs. Grammars Closure and Decidability Summary

What about the Deterministic Variants?

We know that DTMs and NTMs recognize the same languages.
Hence:

Corollary

The Turing-recognizable languages are exactly the Type-0
languages.

Note: It is an open problem whether deterministic LBAs
Note: can recognize exactly the type-1 languages.

Turing Machines vs. Grammars Closure and Decidability Summary

Questions

Questions?

Turing Machines vs. Grammars Closure and Decidability Summary

Closure Properties and Decidability

Turing Machines vs. Grammars Closure and Decidability Summary

Closure Properties

Intersection Union Complement Concatenation Star

Type 3 Yes Yes Yes Yes Yes

Type 2 No Yes No Yes Yes

Type 1 Yes(2) Yes(1) Yes(2) Yes(1) Yes(1)

Type 0 Yes(2) Yes(1) No(3) Yes(1) Yes(1)

Proofs?
(1) proof via grammars, similar to context-free cases
(2) without proof
(3) proof in later chapters (part C)

Turing Machines vs. Grammars Closure and Decidability Summary

Decidability

Word
problem

Emptiness
problem

Equivalence
problem

Intersection
problem

Type 3 Yes Yes Yes Yes

Type 2 Yes Yes No No

Type 1 Yes(1) No(3) No(2) No(2)

Type 0 No(4) No(4) No(2) No(2)

Proofs?
(1) same argument we used for context-free languages
(2) because already undecidable for context-free languages
(3) without proof
(4) proofs in later chapters (part C)

Turing Machines vs. Grammars Closure and Decidability Summary

Questions

Questions?

Turing Machines vs. Grammars Closure and Decidability Summary

Summary

Turing Machines vs. Grammars Closure and Decidability Summary

Summary

Turing machines recognize exactly the type-0 languages.

Linear bounded automata recognize exactly
the context-sensitive languages.

The context-sensitive and type-0 languages are closed
under almost all usual operations.

exception: type-0 not closed under complement

For context-sensitive and type-0 languages
almost no problem is decidable.

exception: word problem for context-sensitive lang. decidable

Turing Machines vs. Grammars Closure and Decidability Summary

What’s Next?

contents of this course:

A. background ✓
▷ mathematical foundations and proof techniques

B. automata theory and formal languages ✓
▷ What is a computation?

C. Turing computability
▷ What can be computed at all?

D. complexity theory
▷ What can be computed efficiently?

E. more computability theory
▷ Other models of computability

	Turing Machines vs. Grammars
	

	Closure Properties and Decidability
	

	Summary

