Theory of Computer Science B10. Turing Machines I

Gabriele Röger

University of Basel

March 29, 2023

Turing Machines

Automata for Type-1 and Type-0 Languages?

Finite automata recognize exactly the regular languages, push-down automata exactly the context-free languages. Are there automata models for context-sensitive and type-0 languages?

Automata for Type-1 and Type-0 Languages?

Finite automata recognize exactly the regular languages, push-down automata exactly the context-free languages. Are there automata models for context-sensitive and type-0 languages?

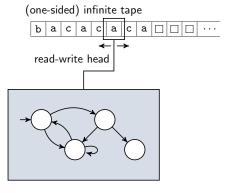
Yes! → Turing machines

Alan Turing (1912-1954)

Picture courtesy of Jon Callas / wikimedia commons

- British logician, mathematician, cryptanalyst and computer scientist
- most important work (for us):
 On Computable Numbers,
 with an Application to the
 Entscheidungsproblem
 - → Turing machines
- collaboration on Enigma decryption
- conviction due to homosexuality;
 pardoned by Elizabeth II in Dec. 2013
- Turing award most important science award in computer science

Turing Machines: Conceptually



Turing Machine: Definition

Definition (Deterministic Turing Machine)

A (deterministic) Turing machine (DTM) is given by a 7-tuple $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}} \rangle$, where Q, Σ, Γ are all finite sets and

- Q is the set of states,
- $lue{\Sigma}$ is the input alphabet, not containing the blank symbol \Box ,
- Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- $\delta: (Q \setminus \{q_{\text{accept}}, q_{\text{reject}}\}) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- $q_0 \in Q$ is the start state,
- $q_{accept} \in Q$ is the accept state,
- $lack q_{
 m reject} \in Q$ is the reject state, where $q_{
 m accept}
 eq q_{
 m reject}$.

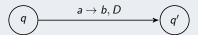
Turing Machine: Transition Function

Let $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}} \rangle$ be a DTM.

What is the Intuitive Meaning of the Transition Function δ ?

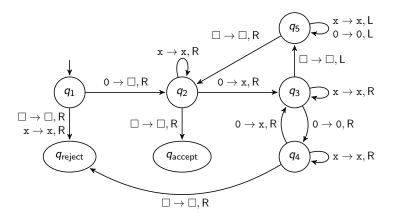
$$\delta(q, a) = \langle q', b, D \rangle$$
:

- If *M* is in state *q* and reads *a*, then
- M transitions to state q' in the next step,
- replacing a with b,
- and moving the head in direction $D \in \{L, R\}$, where:
 - R: one step to the right,
 - L: one step to the left, except if the head is on the left-most cell of the tape in which case there is no movement



Deterministic Turing Machine: Example

$$\langle \{q_1, \dots, q_5, q_{\mathsf{accept}}, q_{\mathsf{reject}}\}, \{0\}, \{0, \mathtt{x}, \square\}, \delta, q_1, q_{\mathsf{accept}}, q_{\mathsf{reject}} \rangle$$



Turing Machine: Configuration

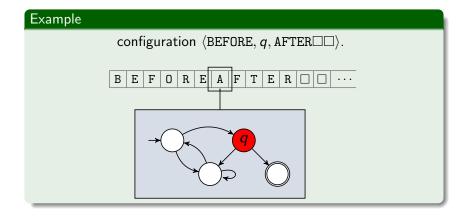
Definition (Configuration of a Turing Machine)

A configuration of a Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}} \rangle$ is given by a triple $c \in \Gamma^* \times Q \times \Gamma^+$.

Configuration $\langle w_1, q, w_2 \rangle$ intuitively means that

- the non-empty or already visited part of the tape contains the word w_1w_2 ,
- the read-write head is on the first symbol of w_2 , and
- the TM is in state q.

Turing Machine Configurations: Example



Turing Machine Configurations: Start Configuration

Initially

- the TM is in start state q_0 ,
- the head is on the first tape cell, and
- the tape contains the input word w followed by an infinite number of \square entries.

The corresponding start configuration is $\langle \varepsilon, q_0, w \rangle$ if $w \neq \varepsilon$ and $\langle \varepsilon, q_0, \square \rangle$ if $w = \varepsilon$.

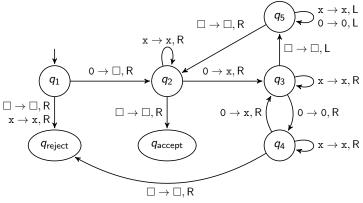
Turing Machine: Step

Definition (Transition/Step of a Turing Machine)

A DTM $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}} \rangle$ transitions from configuration c to configuration c' in one step $(c \vdash_M c')$ according to the following rules:

- $\delta(\varepsilon, q, b_1 \dots b_n) \vdash_M \langle \varepsilon, q', cb_2 \dots b_n \rangle$ if $\delta(q, b_1) = \langle q', c, L \rangle, n \geq 1$

Step: Exercise (Slido)



$$\langle \Box x, q_3, 00 \rangle \vdash ?$$

DTM: Accepted Words

Intuitively, a DTM accepts a word if its computation terminates in the accept state.

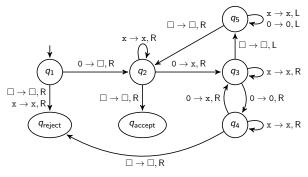
Definition (Words Accepted by a DTM)

DTM $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}} \rangle$ accepts the word $w = a_1 \dots a_n$ if there is a sequence of configurations c_0, \dots, c_k with

- $c_i \vdash_M c_{i+1}$ for all $i \in \{0, \dots, k-1\}$, and
- c_k is an accepting configuration, i.e., a configuration with state q_{accept} .

Accepted Word: Example (Slido)

Does this Turing machine accept input 0000?



DTM: Recognized Language

Definition (Language Recognized by a DTM)

Let M be a deterministic Turing Machine

The language recognized by M (or the language of M) is defined as $\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}$.

DTM: Recognized Language

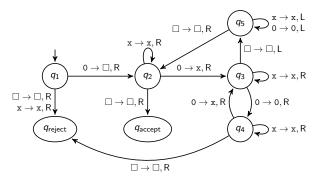
Definition (Language Recognized by a DTM)

Let M be a deterministic Turing Machine The language recognized by M (or the language of M) is defined as $\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}$.

Definition (Turing-recognizable Language)

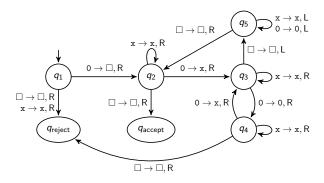
We call a language Turing-recognizable if some deterministic Turing machine recognizes it.

Turing Machine: Example



- Sweep left to right across the tape, crossing off every other 0.
- If in stage 1 the tape contained a single 0, accept.
- If in stage 1 the tape contained more than one 0 and the number of 0s was odd, reject.
- Return the head to the left end of the tape and go to stage 1.

Recognized Language: Example



What language does the Turing machine recognize?

Deciders

- A Turing machine either fails to accept an input
 - **because** it rejects it (entering q_{reject}) or
 - because it loops (= does not halt).
- A Turing machine that halts on all inputs (entering q_{reject} or q_{accept}) is called a decider.
- A decider that recognizes some language also is said to decide the language.

Definition (Turing-decidable Language)

We call a language Turing-decidable (or decidable) if some deterministic Turing machine decides it.

Exercise (if time)

Specify the state diagram of a DTM that decides language

$$L = \{ w \# w \mid w \in \{0, 1\}^* \}.$$

Feel free to solve this together with your neighbour.

Questions

Questions?

Summary

Summary

- Turing machines only have finitely many states but an unbounded tape as "memory".
- Alan Turing proposed them as a mathematical model for arbitrary algorithmic computations.
- In this role, we will revisit them in the parts on computability and complexity theory.