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Pumping Lemma for Context-free Languages

We used the pumping lemma from
chapter B6 to show that a language is
not regular. Is there a similar lemma for

context-free languages?

Yes!
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Pumping Lemma for Context-free Languages

Pumping lemma for context-free languages:

It is possible to prove a variant of the pumping lemma
for context-free languages.

Pumping is more complex than for regular languages:

word is decomposed into the form uvwxy
with |vx | ≥ 1, |vwx | ≤ p
pumped words have the form uv iwx iy

This allows us to prove that certain languages
are not context-free.

example: {anbncn | n ≥ 1} is not context-free
(we will later use this without proof)
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Closure Properties
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Closure under Union, Concatenation, Star

Theorem

The context-free languages are closed under:

union

concatenation

star



Pumping Lemma Closure Properties Decidability Summary

Closure under Union, Concatenation, Star: Proof

Proof.

Closed under union:

Let G1 = ⟨V1,Σ1,R1,S1⟩ and G2 = ⟨V2,Σ2,R2,S2⟩
be context-free grammars. W.l.o.g., V1 ∩ V2 = ∅.
Then ⟨V1 ∪ V2 ∪ {S},Σ1 ∪ Σ2,R1 ∪ R2 ∪ {S → S1, S → S2}, S⟩
(where S /∈ V1 ∪ V2) is a context-free grammar for L(G1) ∪ L(G2).

. . .
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Closure under Union, Concatenation, Star: Proof

Proof (continued).

Closed under concatenation:

Let G1 = ⟨V1,Σ1,R1,S1⟩ and G2 = ⟨V2,Σ2,R2,S2⟩
be context-free grammars. W.l.o.g., V1 ∩ V2 = ∅.
Then ⟨V1 ∪ V2 ∪ {S},Σ1 ∪ Σ2,R1 ∪ R2 ∪ {S → S1S2},S⟩
(where S /∈ V1 ∪ V2) is a context-free grammar for L(G1)L(G2).

. . .
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Closure under Union, Concatenation, Star: Proof

Proof (continued).

Closed under star:

Let G = ⟨V ,Σ,R,S⟩ be a context-free grammar
where w.l.o.g. S never occurs on the right-hand side of a rule.

Then G ′ = ⟨V ∪ {S ′},Σ,R ′,S ′⟩ with S ′ /∈ V and
R ′ = R ∪ {S ′ → ε, S ′ → S , S ′ → SS ′} is a context-free grammar
for L(G )∗.
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No Closure under Intersection or Complement

Theorem

The context-free languages are not closed under:

intersection

complement
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No Closure under Intersection or Complement: Proof

Proof.

Not closed under intersection:

The languages L1 = {aibjcj | i , j ≥ 1}
and L2 = {aibjci | i , j ≥ 1} are context-free.

For example, G1 = ⟨{S,A,X}, {a, b, c},R, S⟩ with
R = {S → AX,A → a,A → aA,X → bc,X → bXc}
is a context-free grammar for L1.

For example, G2 = ⟨{S,B}, {a, b, c},R,S⟩ with
R = {S → aSc, S → B,B → b,B → bB}
is a context-free grammar for L2.

Their intersection is L1 ∩ L2 = {anbncn | n ≥ 1}.
We have remarked before that this language is not context-free.

. . .



Pumping Lemma Closure Properties Decidability Summary

No Closure under Intersection or Complement: Proof

Proof (continued).

Not closed under complement:

By contradiction: assume they were closed under complement.

Then they would also be closed under intersection
because they are closed under union and

L1 ∩ L2 = L1 ∪ L2.

This is a contradiction because we showed
that they are not closed under intersection.
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Questions

Questions?
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Decidability



Pumping Lemma Closure Properties Decidability Summary

Word Problem

Definition (Word Problem for Context-free Languages)

The word problem P∈ for context-free languages is:

Given: context-free grammar G with alphabet Σ
and word w ∈ Σ∗

Question: Is w ∈ L(G )?
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Decidability: Word Problem

Theorem

The word problem P∈ for context-free languages is decidable.

Proof.

If w = ε, then w ∈ L(G ) iff S → ε with start variable S
is a rule of G .

Since for all other rules wl → wr of G we have |wl| ≤ |wr|,
the intermediate results when deriving a non-empty word
never get shorter.

So it is possible to systematically consider all (finitely many)
derivations of words up to length |w | and test whether they
derive the word w .

Note: This is a terribly inefficient algorithm.
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Emptiness Problem

Definition (Emptiness Problem for Context-free Languages)

The emptiness problem P∅ for context-free languages is:

Given: context-free grammar G
Question: Is L(G ) = ∅?
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Decidability: Emptiness Problem

Theorem

The emptiness problem for context-free languages is decidable.

Proof.

Given a grammar G , determine all variables in G that allow
deriving words that only consist of terminal symbols:

First mark all variables A for which a rule A → w exists
such that w only consists of terminal symbols or w = ε.

Then mark all variables A for which a rule A → w exists
such that all nonterminal systems in w are already marked.

Repeat this process until no further markings are possible.

L(G ) is empty iff the start variable is unmarked
at the end of this process.
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Finiteness Problem

Definition (Finiteness Problem for Context-free Languages)

The finiteness problem P∞ for context-free languages is:

Given: context-free grammar G
Question: Is |L(G )| < ∞?
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Decidability: Finiteness Problem

Theorem

The finiteness problem for context-free languages is decidable.

We omit the proof. A possible proof uses the pumping lemma
for context-free languages.

Proof sketch:

We can compute certain bounds l , u ∈ N0

for a given context-free grammar G such that
L(G ) is infinite iff there exists w ∈ L(G ) with l ≤ |w | ≤ u.

Hence we can decide finiteness by testing all (finitely many)
such words by using an algorithm for the word problem.
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Intersection Problem

Definition (Intersection Problem for Context-free Languages)

The intersection problem P∩ for context-free languages is:

Given: context-free grammars G and G ′

Question: Is L(G ) ∩ L(G ′) = ∅?
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Equivalence Problem

Definition (Equivalence Problem for Context-free Languages)

The equivalence problem P= for context-free languages is:

Given: context-free grammars G and G ′

Question: Is L(G ) = L(G ′)?
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Undecidability: Equivalence and Intersection Problem

Theorem

The equivalence problem for context-free languages
and the intersection problem for context-free languages
are not decidable.

We cannot show this with the means currently available,
but we will get back to this in Part C (computability theory).
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Questions

Questions?



Pumping Lemma Closure Properties Decidability Summary

Summary
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Summary

The context-free languages are closed
under union, concatenation and star.

The context-free languages are not closed
under intersection or complement.

The word problem, emptiness problem and finiteness problem
for the class of context-free languages are decidable.

The equivalence problem and intersection problem
for the class of context-free languages are not decidable.
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Further Topics on Context-free Languages and PDAs

With the CYK-algorithm (Cocke, Younger and Kasami)
it is possible to decide w ∈ L(G ) in time O(|w |3)
for a grammar in Chomsky normal form and a word w .

Deterministic push-down automata have the restriction
|δ(q, a,A)|+ |δ(q, ε,A)| ≤ 1 for all q ∈ Q, a ∈ Σ,A ∈ Γ.

The languages recognized by deterministic PDAs
are called deterministic context-free languages.
They form a strict superset of the regular languages
and a strict subset of the context-free languages.
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