Theory of Computer Science
B8. Context-free Languages: Push-Down Automata

## Gabriele Röger

University of Basel
Theory of Computer Science
March 27, 2023 - B8. Context-free Languages: Push-Down Automata

B8.1 Push-Down Automata

B8.2 Summary

March 27, 2023


A stack is a data structure following the last-in-first-out (LIFO) principle supporting the following operations:

- push: puts an object on top of the stack


B8. Context-free Languages: Push-Down Automata
Push-Down Automata
Push-down Automata: Visually


Gabriele Röger (University of Basel)
Theory of Computer Science
March 27, 2023 6/20

Push-down Automata: Non-determinism

- PDAs are non-deterministic and can allow several next transitions from a configuration.
- As long as you read symbols a, push an A on the stack.
- As soon as you read a symbol b, pop an A off the stack as long as you read b.
- If reading the input is finished exactly when the stack becomes empty, accept the input.
- If there is no A to pop when reading ab, or there is still an A on the stack after reading all input symbols, or if you read an a following a b then reject the input.

Like NFAs, PDAs can have transitions that do not read a symbol from the input.

- Similarly, there can be transitions that do not pop and/or push a symbol off/to the stack.

Deterministic variants of PDAs are strictly less expressive,
i. e. there are languages that can be recognized by a
(non-deterministic) PDA but not the deterministic variant.


Definition (Push-down Automaton)
A push-down automaton (PDA) is a 6-tuple
$M=\left\langle Q, \Sigma, \Gamma, \delta, q_{0}, F\right\rangle$ with

- $Q$ finite set of states
- $\Sigma$ the input alphabet
- $\Gamma$ the stack alphabet
- $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \times(\Gamma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q \times(\Gamma \cup\{\varepsilon\}))$ the transition function
- $q_{0} \in Q$ the start state
- $F \subseteq Q$ is the set of accept states


## B8. Context-free Languages: Push-Down Automata Push-down Automata: Transition Function

## Let $M=\left\langle Q, \Sigma, \Gamma, \delta, q_{0}, F\right\rangle$ be a push-down automaton.

What is the Intuitive Meaning of the Transition Function $\delta$ ?

- $\left\langle q^{\prime}, B\right\rangle \in \delta(q, a, A)$ : If $M$ is in state $q$, reads symbol a and has $A$ as the topmost stack symbol, then $M$ can transition to $q^{\prime}$ in the next step popping $A$ off the stack and pushing $B$ on the stack.

- special case $a=\varepsilon$ is allowed (spontaneous transition)
- special case $A=\varepsilon$ is allowed (no pop)
- special case $B=\varepsilon$ is allowed (no push)


Definition
A PDA $M=\left\langle Q, \Sigma, \Gamma, \delta, q_{0}, F\right\rangle$ accepts input $w$
if it can be written as $w=w_{1} w_{2} \ldots w_{m}$ where each $w_{i} \in \Sigma \cup\{\varepsilon\}$
and sequences of states $r_{0}, r_{1}, \ldots, r_{m} \in Q$ and
strings $s_{0}, s_{1}, \ldots, s_{m} \in \Gamma^{*}$ exist
that satisfy the following three conditions:
(1) $r_{0}=q_{0}$ and $s_{0}=\varepsilon$
(2) For $i=0, \ldots, m-1$, we have $\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)$, where $s_{i}=a t$ and $s_{i+1}=b t$ for some $a, b \in \Gamma \cup\{\varepsilon\}$ and $t \in \Gamma^{*}$.
(3) $r_{m} \in F$

The strings $s_{i}$ represent the sequence of stack contents.

PDA: Recognized Language

## Recognized Language: Exercise



Definition (Language Recognized by an NFA) Let $M$ be a PDA with input alphabet $\Sigma$.

The language recognized by $M$ is defined as $\mathcal{L}(M)=\left\{w \in \Sigma^{*} \mid w\right.$ is accepted by $\left.M\right\}$.


The PDA accepts input aabb.
Recognized Language: Exercise

PDAs Recognize Exactly the Context-free Languages
PDAs: Exercise (if time)
Push-Down Automata

Assume you want to have a possible transition from state $q$ to state $q^{\prime}$ in your PDA that

- processes symbol c from the input word,
- can only be taken if the top stack symbol is A,

Theorem

- does not pop A off the stack, and

A language $L$ is context-free if and only if

- pushes B.
$L$ is recognized by a push-down automaton.



