

Theory of Computer Science

B7. Context-free Languages: ϵ -Rules & Chomsky Normal Form

Gabriele Röger

University of Basel

March 27, 2023

Theory of Computer Science

March 27, 2023 — B7. Context-free Languages: ϵ -Rules & Chomsky Normal Form

B7.1 Context-free Grammars and ϵ -Rules

B7.2 Chomsky Normal Form

B7.3 Summary

B7.1 Context-free Grammars and ϵ -Rules

Repetition: Context-free Grammars

Definition (Context-free Grammar)

A **context-free grammar** is a 4-tuple $\langle V, \Sigma, P, S \rangle$ with

- ① V finite set of variables,
- ② Σ finite alphabet of terminal symbols (with $V \cap \Sigma = \emptyset$),
- ③ $P \subseteq (V \times (V \cup \Sigma)^+)^* \cup \{\langle S, \epsilon \rangle\}$ finite set of rules,
- ④ If $S \rightarrow \epsilon \in P$, then all other rules in $V \times ((V \setminus \{S\}) \cup \Sigma)^+$.
- ⑤ $S \in V$ start variable.

Rule $X \rightarrow \epsilon$ is only allowed if $X = S$ and S never occurs on a right-hand side.

With regular grammars, this restriction could be lifted.
How about context-free grammars?

Short-hand Notation for Rule Sets

We abbreviate several rules with the same left-hand side variable in a single line, using “|” for separating the right-hand sides.

For example, we write

$$X \rightarrow 0Y1 \mid XY$$

for:

$$X \rightarrow 0Y1 \text{ and}$$

$$X \rightarrow XY$$

Repetition: Context-free Grammars

Definition (Context-free Grammar)

A **context-free grammar** is a 4-tuple $\langle V, \Sigma, P, S \rangle$ with

- ① V finite set of variables,
- ② Σ finite alphabet of terminal symbols (with $V \cap \Sigma = \emptyset$),
- ③ $P \subseteq (V \times (V \cup \Sigma)^+ \cup \{\langle S, \varepsilon \rangle\})$ finite set of rules,
- ④ If $S \rightarrow \varepsilon \in P$, then all other rules in $V \times ((V \setminus \{S\}) \cup \Sigma)^+$.
- ⑤ $S \in V$ start variable.

Rule $X \rightarrow \varepsilon$ is only allowed if $X = S$ and S never occurs on a right-hand side.

With regular grammars, this restriction could be lifted.
How about context-free grammars?

Context-free Grammars: Exercise

We have used the pumping lemma for regular languages to show that $L = \{a^n b^n \mid n \in \mathbb{N}_0\}$ is not regular.

Show that it is context-free by specifying a suitable grammar G with $\mathcal{L}(G) = L$.

Repetition: Context-free Grammars

Definition (Context-free Grammar)

A **context-free grammar** is a 4-tuple $\langle V, \Sigma, P, S \rangle$ with

- ① V finite set of variables,
- ② Σ finite alphabet of terminal symbols (with $V \cap \Sigma = \emptyset$),
- ③ $P \subseteq (V \times (V \cup \Sigma)^+ \cup \{\langle S, \varepsilon \rangle\})$ finite set of rules,
- ④ If $S \rightarrow \varepsilon \in P$, then all other rules in $V \times ((V \setminus \{S\}) \cup \Sigma)^+$.
- ⑤ $S \in V$ start variable.

Rule $X \rightarrow \varepsilon$ is only allowed if $X = S$ and S never occurs on a right-hand side.

With regular grammars, this restriction could be lifted.
How about context-free grammars?

Reminder: Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start variable does not occur on the right-hand side of any rule.

Theorem

For every grammar $G = \langle V, \Sigma, P, S \rangle$ there is a grammar $G' = \langle V', \Sigma, P', S \rangle$ with rules $P' \subseteq (V' \cup \Sigma)^+ \times (V' \setminus \{S\} \cup \Sigma)^*$ such that $\mathcal{L}(G) = \mathcal{L}(G')$.

In the proof we constructed a suitable grammar, where the rules in P' were not fundamentally different from the rules in P :

- ▶ for rules from $V \times (V \cup \Sigma)^+$, we only introduced additional rules from $V' \times (V' \cup \Sigma)^+$, and
- ▶ for rules from $V \times \varepsilon$, we only introduced rules from $V' \times \varepsilon$, where $V' = V \cup \{S'\}$ for some new variable $S' \notin V$.

ε -Rules

Theorem

For every grammar G with rules $P \subseteq V \times (V \cup \Sigma)^*$ there is a context-free grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof (continued).

Let P'' be the rule set that is constructed from P' by

- ▶ adding rules that obviate the need for $A \rightarrow \varepsilon$ rules: for every existing rule $B \rightarrow w$ with $B \in V'$, $w \in (V' \cup \Sigma)^+$, let I_ε be the set of positions where w contains a variable $A \in V_\varepsilon$. For every non-empty set $I' \subseteq I_\varepsilon$, add a new rule $B \rightarrow w'$, where w' is constructed from w by removing the variables at all positions in I' .
- ▶ removing all rules of the form $A \rightarrow \varepsilon$ ($A \neq S$).

Then $G'' = \langle V', \Sigma, P'', S \rangle$ is context-free and $\mathcal{L}(G) = \mathcal{L}(G'')$. \square

ε -Rules

Theorem

For every grammar G with rules $P \subseteq V \times (V \cup \Sigma)^*$ there is a context-free grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof.

Let $G = \langle V, \Sigma, P, S \rangle$ be a grammar with $P \subseteq V \times (V \cup \Sigma)^*$.

Let $G' = \langle V', \Sigma, P', S \rangle$ be a grammar with $\mathcal{L}(G) = \mathcal{L}(G')$ with $P' \subseteq V' \times ((V' \setminus S) \cup \Sigma)^*$.

Let $V_\varepsilon = \{A \in V' \mid A \Rightarrow_{G'}^* \varepsilon\}$. We can find this set V_ε by first collecting all variables A with rule $A \rightarrow \varepsilon \in P'$ and then successively adding additional variables B if there is a rule $B \rightarrow A_1 A_2 \dots A_k \in P'$ and the variables A_i are already in the set for all $1 \leq i \leq k$.

...

Example

Consider $G = \langle \{X, Y, Z, S\}, \{a, b\}, R, S \rangle$ with rules:

$$\begin{aligned} S &\rightarrow \varepsilon \mid XY \\ X &\rightarrow aXYbX \mid YZ \\ Y &\rightarrow \varepsilon \mid b \\ Z &\rightarrow \varepsilon \mid a \end{aligned}$$

\rightsquigarrow blackboard

B7.2 Chomsky Normal Form

Chomsky Normal Form: Motivation

As in logical formulas (and other kinds of structured objects), **normal forms** for grammars are useful:

- ▶ they show which aspects are critical for defining grammars and which ones are just syntactic sugar
- ▶ they allow proofs and algorithms to be restricted to a limited set of grammars (inputs): those in normal form

Hence we now consider a **normal form** for context-free grammars.

Chomsky Normal Form: Definition

Definition (Chomsky Normal Form)

A context-free grammar G is in **Chomsky normal form (CNF)** if all rules have one of the following three forms:

- ▶ $A \rightarrow BC$ with variables A, B, C , or
- ▶ $A \rightarrow a$ with variable A , terminal symbol a , or
- ▶ $S \rightarrow \varepsilon$ with start variable S .

in short:

rule set $P \subseteq (V \times (V'V' \cup \Sigma)) \cup \{\langle S, \varepsilon \rangle\}$ with $V' = V \setminus \{S\}$

Chomsky Normal Form: Theorem

Theorem

For every context-free grammar G there is a context-free grammar G' in Chomsky normal form with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof.

The following algorithm converts the rule set of G into CNF:

Step 1: Eliminate rules of the form $A \rightarrow B$ with variables A, B .

If there are sets of variables $\{B_1, \dots, B_k\}$ with rules $B_1 \rightarrow B_2, B_2 \rightarrow B_3, \dots, B_{k-1} \rightarrow B_k, B_k \rightarrow B_1$, then replace these variables by a new variable B .

Define a strict total order $<$ on the variables such that $A \rightarrow B \in P$ implies that $A < B$. Iterate from the largest to the smallest variable A and eliminate all rules of the form $A \rightarrow B$ while adding rules $A \rightarrow w$ for every rule $B \rightarrow w$ with $w \in (V \cup \Sigma)^+$

Chomsky Normal Form: Theorem

Theorem

For every context-free grammar G there is a context-free grammar G' in Chomsky normal form with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof (continued).

Step 2: Eliminate rules with terminal symbols on the right-hand side that do not have the form $A \rightarrow a$.

For every terminal symbol $a \in \Sigma$ add a new variable A_a and the rule $A_a \rightarrow a$.

Replace all terminal symbols in all rules that do not have the form $A \rightarrow a$ with the corresponding newly added variables. . . .

Chomsky Normal Form: Theorem

Theorem

For every context-free grammar G there is a context-free grammar G' in Chomsky normal form with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof (continued).

Step 3: Eliminate rules of the form $A \rightarrow B_1 B_2 \dots B_k$ with $k > 2$

For every rule of the form $A \rightarrow B_1 B_2 \dots B_k$ with $k > 2$, add new variables C_2, \dots, C_{k-1} and replace the rule with

$$A \rightarrow B_1 C_2$$

$$C_2 \rightarrow B_2 C_3$$

⋮

$$C_{k-1} \rightarrow B_{k-1} B_k$$

Example

Consider $G = \langle \{Y, Z, S\}, \{a, b\}, R, S \rangle$ with rules:

$$S \rightarrow aZbY \mid Y \mid ab$$

$$Y \rightarrow Z \mid b$$

$$Z \rightarrow Y \mid bSa$$

→ blackboard

Chomsky Normal Form: Length of Derivations

Observation

Let G be a grammar in Chomsky normal form, and let $w \in \mathcal{L}(G)$ be a non-empty word generated by G .

Then all derivations of w have exactly $2|w| - 1$ derivation steps.

Why?

B7.3 Summary

Summary

- ▶ The restriction of ε -occurrences in rules is not necessary to characterize the set of context-free languages.
- ▶ Every context-free language has a grammar in **Chomsky normal form**. All rules have form
 - ▶ $A \rightarrow BC$ with variables A, B, C , or
 - ▶ $A \rightarrow a$ with variable A , terminal symbol a , or
 - ▶ $S \rightarrow \varepsilon$ with start variable S .