Theory of Computer Science

B5. Regular Languages: Regular Expressions

Gabriele Roger

University of Basel

March 20, 2023

Regular Expressions
000000000

Regular Expressions

Regular Expressions s vs. Regular Languages Summar

0O@0000000

Formalisms for Regular Languages

m DFAs, NFAs and regular grammars can all describe
exactly the regular languages.

m Are there other concepts with the same expressiveness?

m Yes! ~~ regular expressions

Regular Expressions s vs. Regular Languages Summar

0O@0000000

Formalisms for Regular Languages

m DFAs, NFAs and regular grammars can all describe
exactly the regular languages.

m Are there other concepts with the same expressiveness?

m Yes! ~~ regular expressions

~> see it in the RealWorld™

Regular Expressions
00@000000

Reminder: Concatenation of Languages and Kleene Star

Concatenation

m For two languages Ly (over X1) and L (over X3), the
concatenation of Ly and L; is the language
LiLy = {W1W2 S (Zl U 22)* ’ wy € Ll, Wy € Lg}.

Regular Expressions g 5 vs. Regular Languages Summar

00@000000

Reminder: Concatenation of Languages and Kleene Star

Concatenation

m For two languages Ly (over X1) and L (over X3), the
concatenation of Ly and L; is the language
LiLy = {W1W2 S (Zl U 22)* ’ wy € Ll, Wy € LQ}.

Kleene star
m For language L define
m 0= {e}
m =1

m L =[] for i € Ny
m The definition of Kleene star on L is L* = |-, L'.

Regular Expressions s vs. Regular Languages

000e00000

Regular Expressions: Definition

Definition (Regular Expressions)

Regular expressions over an alphabet ¥ are defined inductively:
m () is a regular expression
B ¢ is a regular expression
m If a € ¥, then a is a regular expression
If o and (8 are regular expressions, then so are:
m (af) (concatenation)
m (a|f) (alternative)
m (a*) (Kleene closure)

Regular Expressions s vs. Regular Languages

0000@0000

Regular Expressions: Omitting Parentheses

omitted parentheses by convention:
m Kleene closure a* binds more strongly than concatenation af.
m Concatenation binds more strongly than alternative «/|g.

m Parentheses for nested concatenations/alternatives are omitted
(we can treat them as left-associative; it does not matter).

Example: ab*c|e|abab* abbreviates ((((a(b*))c)|e)|(((ab)a)(b*))).

Regular Expressions
[e]e]e]e]e] lelele]

Regular Expressions: Examples

some regular expressions for ¥ = {0, 1}:
m 0*10*
= (0[1)*1(0|1)*
= ((01)(0]1))"
= 01]10
= 0(0|1)*0|1(0|1)*1]0]1

Regular Expressions e, ons vs. Regular Languages Summary

0O00000e00

Regular Expressions: Language

Definition (Language Described by a Regular Expression)

The language described by a regular expression 7, written £(7),
is inductively defined as follows:

m If v =0, then L(v) =

m If v =¢, then L(v) = {e}.

m If v = awith a € &, then L(v) = {a}.

m If v = (af), where a and 3 are regular expressions,
(7) = L(a)L(B).

m If v = («|B), where a and f3 are regular expressions,

then L(v) = L(a) U L(B).
(a*) where « is a regular expression,

) =

L()".

Examples: blackboard

then L

mify=
then L(~

Regular Expressions g s. Regular Languages Summar

000000080

Regular Expressions: Exercise

Specify a regular expression that describes
L={w e {0,1}* | every 0 in w is followed by at least one 1}.

§

e

Regular Expressions
0O0000000e

Questions

o

~

Questions?

Regular Ex| s. Regular Languages

.OOOOOOOOOOOO

Regular Expressions vs. Regular
Languages

Regular Expressions vs. Regular Languages
0®00000000000

Finite Languages Can Be Described By Regular Expressions

Every finite language can be described by a regular expression. I

Regular Expressions vs. Regular Languages

O@00000000000

Finite Languages Can Be Described By Regular Expressions

Every finite language can be described by a regular expression. \

For every word w € L*, a regular expression describing

the language {w} can be built from regular expressions a € ¥
by using concatenations.

(Useeif w=¢e.)

Regular Expressions vs. Regular Languages Summary
0®00000000000 00

Finite Languages Can Be Described By Regular Expressions

Every finite language can be described by a regular expression. \

For every word w € L*, a regular expression describing

the language {w} can be built from regular expressions a € ¥
by using concatenations.

(Useeif w=¢e.)

For every finite language L = {w1,wa,..., wp},

a regular expression describing L can be built from the regular
expressions for {w;} by using alternatives.

(Use D if L=10.) O

Regular Expressions vs. Regular Languages

O@00000000000

Finite Languages Can Be Described By Regular Expressions

Every finite language can be described by a regular expression. \

For every word w € L*, a regular expression describing

the language {w} can be built from regular expressions a € ¥
by using concatenations.

(Useeif w=¢e.)

For every finite language L = {w1,wa,..., wp},

a regular expression describing L can be built from the regular
expressions for {w;} by using alternatives.

(Use D if L=10.) O

v

We will see that this implies that all finite languages are regular.

Regular Expressions vs. Regular Languages
00®0000000000

Regular Expressions Not More Powerful Than NFAs

For every language that can be described by a regular expression,
there is an NFA that accepts it.

Regular Expressions vs. Regular Languages

00@0000000000

Regular Expressions Not More Powerful Than NFAs

For every language that can be described by a regular expression,
there is an NFA that accepts it.

Let v be a regular expression.
We show the statement by induction over the structure
of regular expressions.

Regular Expressions vs. Regular Languages

00@0000000000

Regular Expressions Not More Powerful Than NFAs

For every language that can be described by a regular expression,
there is an NFA that accepts it.

Let v be a regular expression.
We show the statement by induction over the structure

of regular expressions.
For v =0, v = ¢ and = a, the following three NFAs accept L(7):

y=0: »O v=e —>© v=a »O—a>©

Regular Expressions vs. Regular Languages

00@0000000000

Regular Expressions Not More Powerful Than NFAs

For every language that can be described by a regular expression,
there is an NFA that accepts it.

Let v be a regular expression.
We show the statement by induction over the structure
of regular expressions.

For v =0, v = ¢ and = a, the following three NFAs accept L(7):

=0 »O y=e ->© y=a ()2 ,@

For v = (af), v = («|B) and v = («*) we use the constructions
that we used to show that the regular languages are closed under
concatenation, union, and star, respectively. 0J

v

Regular Expressions vs. Regular Languages Summar

000@000000000

Regular Expression to NFA: Exercise

Construct an NFA that recognizes the language
that is described by the regular expression (abla)*.

Regular Expressions vs. Regular Languages
0000800000000

DFAs Not More Powerful Than Regular Expressions

Every language recognized by a DFA can be described
by a regular expression.

Regular Expressions vs. Regular Languages
0000800000000

DFAs Not More Powerful Than Regular Expressions

Every language recognized by a DFA can be described
by a regular expression.

We can prove this using a generalization of NFAs.
We specify the corresponding algorithm.

Regular Expressions vs. Regular Languages

0O0000@0000000

Generalized Nondeterministic Finite Automata (GNFAs)

GNFAs are like NFAs but the transition labels can be arbitrary
regular expressions over the input alphabet.

For convenience, we require a special form:
0 m The start state has a transition to
every other state but no incoming one.
m One accept state (# start state)

m The accept state has an incoming
transition from every other state but
no outgoing one.

m For all other states, one transition
goes from every state to every other
state and also to itself.

Regular Expressions vs. Regular Languages Summar

0000008000000

Generalized Nondeterministic Finite Automaton: Definition

Definition (Generalized Nondeterministic Finite Automata)

A generalized nondeterministic finite automaton (GNFA) is a
5-tuple M = (Q, X, 9, gs, ga) where

m Q is the finite set of states
m X is the input alphabet

B (Q\{g:}) x (Q\ {gs}) — Ry is the transition function
(with Ry the set of all regular expressions over ¥)

B gs € Q is the start state
B g, € Q is the accept state

ular E: 1S Regular Expressions vs. Regular Languages
s Yololele 0000000@00000

GNFA: Accepted Words

Definition (Words Accepted by a GNFA)

GNFA M = (Q, X, 0, gs, qa) accepts the word w
if w=wq...wg, where each w; is in X*
and a sequence of states qg, g1,..., gk € Q exists with
(1] do = Qs,
@ for each i, we have w; € L(R;), where R; = 6(qi-1,gi), and

Q gk =qa.)

DFA to GNFA

Regular Expressions vs. Regular Languages
0000000080000

We can transform every DFA into a GNFA of the special form:

NG SN, o

m Add a new start state with an
e-transition to the original start state.

m Add a new accept state with
e-transitions from the original accept
states.

m Combine parallel transitions into one,
labelled with the alternative of the
original labels.

m If required transitions are missing, add
transitions labelled with (.

Regular Expressions vs. Regular Languages

000000000 e000

Conversion of GNFA to a Regular Expressions

Convert(M = (Q, X, 6, gs, qa))

Q If |Q| = 2 return 6(qs, ga)-

@ Select any state g € Q \ {gs, g2} and let
MI = <Q \ {q}’ z’ 6/7 q57 qa>1
where for any g; # g, and q; # qs
we define

' (qi, qj) = (71)(72)*(3)|(7a)
with
1 =9(qi,9), 72 =0(q,9), 13 = 9(q,). 74 = 0(qi, qj).-
© Return Convert(M’)

Regular Expressions vs. Regular Languages
0000000000800

Example

For DFA:

- Do
0

Regular Expressions vs. Regular Languages

0000000000800

Example

For DFA:

Regular Expressions vs. Regular Languages

0000000000800

Example

For DFA:

o(ol1)*

Regular Expressions vs. Regular Languages

0000000000800

Example

For DFA:

o(ol1)*

_). 1*0(01)*

Regular Expressions vs. Regular Languages

0000000000800

Example

For DFA:

o(of1)"
3

=
_’ 7 "

Regular expression: 1*0(0[1)*

Regular Expressions vs. Regular Languages Summar

0000000000080

Regular Languages vs. Regular Expressions

Theorem (Kleene)

The set of languages that can be described by regular expressions
is exactly the set of regular languages.

This follows directly from the previous two theorems.

Regular Expressions vs. Regular Languages

Summar

000000000000 e

Questions

o

~

Questions?

Summarn
0

Summary

Summary
o

Summary

m Regular expressions are another way to describe languages.

m All regular languages can be described by regular expressions,
and all regular expressions describe regular languages.

m Hence, they are equivalent to finite automata.

	Regular Expressions
	

	Regular Expressions vs. Regular Languages
	

	Summary
	

