Theory of Computer Science

B3. Regular Languages

Gabriele Roger

University of Basel

March 13, 2023



cti
@00000

Introduction



Introduction

0O@0000

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (V, X, R, S) with
m V finite set of variables (nonterminal symbols)
m Y finite alphabet of terminal symbols with VN'YX = ()
B RC(VX(ZUZV))U{(S,¢e)} finite set of rules
mifS—>eceR, thereisno X eV ,yeXwithX—>ySeR
m S € V start variable.




Finite Automata

Introduction

0O@0000

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (V, X, R, S) with
m V finite set of variables (nonterminal symbols)
m Y finite alphabet of terminal symbols with VN'YX = ()
B RC(VX(ZUXV))U{(S,e)} finite set of rules
mifS—>eceR, thereisno X eV ,yeX withX—ySeR
m S € V start variable. )

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.



Introduction o Summar

[e]e] lele]e}

Question (Slido)

With a regular grammar, how many steps does it
take to derive a non-empty word (over X) from
the start variable?




Introduction
00000

Repetition: Regular Languages

A language is regular if it is generated by some regular grammar.

Definition (Regular Language)

A language L C X* is regular
if there exists a regular grammar G with £(G) = L.




Introduction
000000

Questions

m How restrictive is the requirement on € rules?
If we don't restrict the usage of € as right-hand side of a rule,
what does this change?

m How do regular languages relate to finite automata?
Can all regular languages be recognized by a finite
automaton? And vice versa?

m With what operations can we “combine” regular languages

and the result is again a regular language?
E.g. is the intersection of two regular languages regular?



Introduction

O0000e

Questions

o

~

Questions?



Epsilon Rules
©0000000000000

Epsilon Rules



Epsilon Rules Finite Automata

0@000000000000 00000«

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (V, %, R, S) with
m V finite set of variables (nonterminal symbols)
Y finite alphabet of terminal symbols with VNYX = ()

|

B RC(VX(ZUXV))U{(S.e)} finite set of rules
mifS—>ceR, thereisno X eV ,ye¥withX—>ySeR

m S € V start variable. )

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.



Epsilon Rules Finite Automata

0@000000000000 00000«

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (V, %, R, S) with
m V finite set of variables (nonterminal symbols)
Y finite alphabet of terminal symbols with VNYX = ()

|

B RC(VX(ZUXV))U{(S.e)} finite set of rules
mifS—>ceR, thereisno X eV ,ye¥withX—>ySeR

m S € V start variable. )

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?



Epsilon Rules ata Summar
00@00000000000 ot} 00

Our Plan

We are going to show that every grammar with rules
RCVx(XuxVUe)

generates a regular language.



Epsilon Rules
000@0000000000

Question

This is much simpler!
Why don’t we define
regular languages
via such grammars?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net



Introduction Epsilon Rules

0000@000000000

Question
%
. - &
Both variants (restricting the occurrence of ¢ on 5’%

the right-hand side of rules or not) characterize
exactly the regular languages.

In the following situations, which variant would you prefer?
m You want to prove something for all regular languages.

m You want to specify a grammar to establish
that a certain language is regular.

m You want to write an algorithm that takes a grammar
for a regular language as input.



Introduction Epsilon Rules itomata

00000®00000000

Our Plan

We are going to show that every grammar with rules
RCVx(XUuXVUe)

generates a regular language.

m The proof will be constructive, i.e. it will tell us how to
construct a regular grammar for a language
that is given by such a more general grammar.

m Two steps:

@ Eliminate the start variable from the right-hand side of rules.
@ Eliminate forbidden occurrences of ¢.



Epsilon Rules

000000800000 00

Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start
variable does not occur on the right-hand side of any rule.

For every grammar G = (V, X, R, S) there is a grammar
G'=(V',L,R',S) with rules

R C(VUXD)*V(VUD)* x (V'\{S}UX)* such that
L(G) = L(G).

Note: this theorem is true for all grammars.



Epsilon Rules me Automata

0000000e000000

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let’s illustrate its idea.
Consider G = ({S, X}, {a,b}, R,S) with the following rules in R:

bS — ¢ S — XabS bX — aSa X — abc



Epsilon Rules
00000008000000

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let’s illustrate its idea.
Consider G = ({S, X}, {a,b}, R,S) with the following rules in R:

bS — ¢ S — XabS bX — aSa X — abc

The new grammar has all original rules except that S is replaced
with a new variable S’ (allowing to derive everything from S’ that
could originally be derived from the start variable S):

bS — ¢ S’ — Xab$’ bX — aS’a X — abc



Epsilon Rules
00000008000000

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let’s illustrate its idea.
Consider G = ({S, X}, {a,b}, R,S) with the following rules in R:

bS — ¢ S — XabS bX — aSa X — abc

The new grammar has all original rules except that S is replaced
with a new variable S’ (allowing to derive everything from S’ that
could originally be derived from the start variable S):

bS — ¢ S’ — Xab$’ bX — aS’a X — abc

In addition, it has rules that allow to start from the original start
variable but switch to S’ after the first rule application:

S — Xab§'



Epsilon Rules Finite Automata Summary

00000000 e00000 0000000«

Start Variable in Right-Hand Side of Rules: Proof

Let G =(V,XL,R,S) be a grammar and S’ ¢ V be a new variable.
Construct rule set R’ from R as follows:

m for every rule r € R, add a rule r’ to R’, where r’ is the result
of replacing all occurences of S in r with S’

m foreveryrule S — w € R, add arule S — w’ to R/, where w/
is the result of replacing all occurences of S in w with S’

Then £(G) = L((VU{S'},%,R',S)). O

v




Epsilon Rules utum ata Summary

00000000 e00000

Start Variable in Right-Hand Side of Rules: Proof

Let G =(V,XL,R,S) be a grammar and S’ ¢ V be a new variable.
Construct rule set R’ from R as follows:

m for every rule r € R, add a rule r’ to R’, where r’ is the result
of replacing all occurences of S in r with S’

m forevery rule S — w € R, add arule S — w’ to R, where w’
is the result of replacing all occurences of S in w with S’

Then £(G) = L((VU{S'},%,R',S)). O

v

Note that the rules in R’ are not fundamentally different from the
rules in R. In particular:

mfRCV x(SUZVU{e}) then R C V' x (ZUTV' U {e}).
m fRCV x(VUE)* then R"C V' x (V' UX)*.



Epsilon Rules
000000000e0000

Epsilon Rules

For every grammar G with rules R C V x (XUXV U {e})
there is a regular grammar G' with L(G) = L(G').




Epsilon Rules Automata Summar

0000000000 e000

Epsilon Rules: Example

Let's again first illustrate the idea.
Consider G = ({S, X, Y}, {a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢



Epsilon Rules Finite At

0000000000 e000

Epsilon Rules: Example

Let's again first illustrate the idea.
Consider G = ({S, X, Y}, {a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢

© The start variable does not occur on a right-hand side. v/



Epsilon Rules
0000000000e000

Epsilon Rules: Example

Let's again first illustrate the idea.
Consider G = ({S, X, Y}, {a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢

© The start variable does not occur on a right-hand side. v/

@ Determine the set of variables that can be replaced with the
empty word: V. ={S,Y}.



Epsilon Rules
0000000000e000

Epsilon Rules: Example

Let's again first illustrate the idea.
Consider G = ({S,X,Y},{a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢

© The start variable does not occur on a right-hand side. v/

@ Determine the set of variables that can be replaced with the
empty word: V. ={S,Y}.

© Eliminate forbidden rules: Y//4/¢



Epsilon Rules
0000000000e000

Epsilon Rules: Example

Let's again first illustrate the idea.
Consider G = ({S,X,Y},{a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢

© The start variable does not occur on a right-hand side. v/

@ Determine the set of variables that can be replaced with the
empty word: V. ={S,Y}.

© Eliminate forbidden rules: Y//4#/¢

@ If a variable from V. occurs in the right-hand side,
add another rule that directly emulates a subsequent
replacement with the empty word: X - aand Y — b



Intr du t\ on Epsilon Rules F\mt# Aut >mata Summary

0000000000080

Epsilon Rules

For every grammar G with rules R C V x (XUXV U {e})
there is a regular grammar G' with L(G) = L(G').

.

Let G=(V,X,R,S) be a grammars.t. RC V x (X UXV U{e}).
Use the previous proof to construct grammar G' = (V/, X R’ S)
st. R CV x (ZUX(V'\{S}Hu{e}) and L(G') = E(G)

Let V. ={A|A—c€ R}

Let R” be the rule set that is created from R’ by removing all rules
of the form A — ¢ (A # S). Additionally, for every rule of the form
B—+xAwithAec V., Be V' xe X weaddarule B— xtoR".

Then G = (V/,%, R",S) is regular and £(G) = £(G"). [

.




Epsilon Rules

000000000000 e0

Questions

o

~

Questions?



Epsilon Rules Finite Automata Summar

0000000000000 e 00000«

Exercise (Slido)

Consider G = ({S,X,Y},{a,b}, R,S) with the
following rules in R:

S—e¢ S — aX
X — aX X — aY
Y — bY Y ¢

m Is G a regular grammar?
m Is £(G) regular?



Finite Automata
©0000000

Finite Automata



Finite Automata
0®000000

Languages Recognized by DFAs are Regular

Every language recognized by a DFA is regular (type 3). I




Finite Automata Summary
fo] YoloToleYele) 00

Languages Recognized by DFAs are Regular

Every language recognized by a DFA is regular (type 3). \

Let M = (Q, X, 4, qo, F) be a DFA.
We define a regular grammar G with £(G) = L(M).

Define G = (Q, X, R, qo) where R contains
m arule g — aq’ for every 6(q,a) = ¢/, and

m arule g — ¢ for every g € F.

(We can eliminate forbidden epsilon rules
as described at the start of the chapter.)




Epsilon Rules Finite Automata Summary
000 08000000 00

Languages Recognized by DFAs are Regular

Every language recognized by a DFA is regular (type 3). \

Proof (continued).

For every w = a1a>...a, € ¥*:

w € L(M)
iff there is a sequence of states qg, g1, .. ., q), with

qb = qo, q, € F and 6(q}_;,a;) =4 forall i € {1,...,n}
iff there is a sequence of variables qg, g1, . . ., g}, with

qp is start variable and we have g = ai1q] = a1a2q5 =
ce = 2132...3pQ, = aiay...an.

iff w € £(G) O




Finite Automata Summar

[e]e] le]ele]ele]

Specify a regular grammar that generates the
language recognized by this DFA.



Finite Automata

O00@0000

Questions

o

~

Questions?



Question

Finite Automata

[e]e]ee] lelele]

Is the inverse true as well:
for every regular language, is there a
DFA that recognizes it? That is, are the
languages recognized by DFAs exactly
the regular languages?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net



Question

*

S

Finite Automata

[e]e]ee] lelele]

Is the inverse true as well:
for every regular language, is there a
DFA that recognizes it? That is, are the
languages recognized by DFAs exactly
the regular languages?

Yes!
We will prove this via a detour.

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net



Epsilon Rules Finite Automata Summar

O0000e00

Regular Grammars are No More Powerful than NFAs

For every regular grammar G there is an NFA M
with £(G) = L(M).

Proof illustration:
Consider G = ({S,A,B}, {a,b}, R,S) with the following rules in R:

S—e S — aA A — aA A — aB
A—a B — bB B—b



Epsilon Rules Finite Automata Summary

O0000e00

Regular Grammars are No More Powerful than NFAs

For every regular grammar G there is an NFA M
with £(G) = L(M).

.

Let G = (V,X,R,S) be a regular grammar.
Define NFA M = (Q, %, 6, qo, F) with
RQ=VU{X}, X¢gV
Ggo=35
F:{{S,X} ifS—ceR
(X} ifS—c¢R
Bed(Aa)ifA—aBeR
Xeo(Aa)ifA»aeR

.




Finite Automata Summary
00000800 [e]e)

Regular Grammars are No More Powerful than NFAs

For every regular grammar G there is an NFA M
with £(G) = L(M).

.

Proof (continued).

For every w = a1ay...a, € ¥* with n > 1:

w e L(G)
iff there is a sequence on variables A;, As, ..., A,_1 with
S = 1AL = a1a2A = - = 3132 ...ap-1An—1 = 3132 ... a,.
iff there is a sequence of variables A1, Ay, ..., A,_1 with
A € 5(5,31),/\2 € 5(A1, 32), o, XE 6(A,,_1,a,,).
iff w € L(M).

Case w = ¢ is also covered because S € Fiff S -+ € R. ]

A




on Rule Finite Automata

00000080

Finite Automata and Regular Languages

regular grammar

DFA NFA

In particular, this implies:

L regular <> L is recognized by a DFA.
L regular <> L is recognized by an NFA.




Finite Automata

O000000e

Questions

o

~

Questions?



Summarn
0

Summary



S
o

ummary

Summary

m Regular grammars restrict the usage of ¢ in rules.

m This restriction is not necessary for the characterization of
regular languages but convenient if we want to prove
something for all regular languages.

m Finite automata (DFAs and NFAs) recognize exactly the
regular languages.



	Introduction
	

	Epsilon Rules
	

	Finite Automata
	

	Summary

