Theory of Computer Science B2. Grammars

Gabriele Röger

University of Basel

March 8, 2023

Introduction

Reminder: Alphabets and Formal Languages

- An alphabet Σ is a finite non-empty set of symbols.
- A word over Σ is a finite sequence of elements from Σ.

■ The empty word is denoted by ε.
■ Σ^{*} denotes the set of all words over Σ.
■ Σ^{+}denotes the set of all non-empty words over Σ.

- A formal language (over alphabet Σ) is a subset of Σ^{*}.

Reminder: Finite Automata and Formal Languages

Example

The DFA recognizes the language $\left\{w \in\{0,1\}^{*} \mid w\right.$ ends with 00$\}$.

- A finite automaton defines a language, the language it recognizes.
- The specification of the automaton is always finite.
- The recognized language can be infinite.

Other Ways to Specify Formal Languages?

Sought: General concepts to define (often infinite) formal languages with finite descriptions.

- today: grammars

■ later: more automata, regular expressions, ...

Grammar: Example

Variables $V=\{\mathrm{S}, \mathrm{X}, \mathrm{Y}\}$
Alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.
Production rules:

$$
\begin{array}{lll}
\mathrm{S} \rightarrow \varepsilon & \mathrm{X} \rightarrow \mathrm{aXYc} & \mathrm{cY} \rightarrow \mathrm{Yc} \\
\mathrm{~S} \rightarrow \mathrm{abc} & \mathrm{X} \rightarrow \mathrm{abc} & \mathrm{bY} \rightarrow \mathrm{bb} \\
\mathrm{~S} \rightarrow \mathrm{X} & &
\end{array}
$$

Grammar: Example

Variables $V=\{\mathrm{S}, \mathrm{X}, \mathrm{Y}\}$
Alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.
Production rules:

$$
\begin{array}{lll}
\mathrm{S} \rightarrow \varepsilon & \mathrm{X} \rightarrow \mathrm{aXYc} & \mathrm{cY} \rightarrow \mathrm{Yc} \\
\mathrm{~S} \rightarrow \mathrm{abc} & \mathrm{X} \rightarrow \mathrm{abc} & \mathrm{bY} \rightarrow \mathrm{bb} \\
\mathrm{~S} \rightarrow \mathrm{X} & &
\end{array}
$$

You start from S and may in each step replace the left-hand side of a rule with the right-hand side of the same rule. This way, derive a word over Σ.

Grammar: Example

Variables $V=\{\mathrm{S}, \mathrm{X}, \mathrm{Y}\}$
Alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.
Production rules:

$$
\begin{array}{lll}
\mathrm{S} \rightarrow \varepsilon & \mathrm{X} \rightarrow \mathrm{aXYc} & \mathrm{cY} \rightarrow \mathrm{Yc} \\
\mathrm{~S} \rightarrow \mathrm{abc} & \mathrm{X} \rightarrow \mathrm{abc} & \mathrm{bY} \rightarrow \mathrm{bb} \\
\mathrm{~S} \rightarrow \mathrm{X} & &
\end{array}
$$

Exercise

Variables $V=\{\mathrm{S}, \mathrm{X}, \mathrm{Y}\}$
Alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.
Production rules:

$\mathrm{S} \rightarrow \varepsilon$	$\mathrm{X} \rightarrow \mathrm{aXYc}$	$\mathrm{cY} \rightarrow \mathrm{Yc}$
$\mathrm{S} \rightarrow \mathrm{abc}$	$\mathrm{X} \rightarrow \mathrm{abc}$	$\mathrm{bY} \rightarrow \mathrm{bb}$

$S \rightarrow X$

Derive word aabbcc starting from S.

Application: Content Generation in Games

■ http://www.gameaipro.com/
■ GameAIPro 2, chapter 40
Procedural Content Generation:
An Overview by Gillian Smith

Questions

Questions?

Grammars

Grammars

Definition (Grammars)

A grammar is a 4-tuple $\langle V, \Sigma, R, S\rangle$ with:

- V finite set of variables (nonterminal symbols)
- Σ finite alphabet of terminal symbols with $V \cap \Sigma=\emptyset$
$\square R \subseteq(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$ finite set of rules
- $S \in V$ start variable

A rule is sometimes also called a production or a production rule.

Rule Sets

What exactly does $R \subseteq(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$ mean?

- $(V \cup \Sigma)^{*}$: all words over $(V \cup \Sigma)$

Rule Sets

What exactly does $R \subseteq(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$ mean?

- $(V \cup \Sigma)^{*}$: all words over $(V \cup \Sigma)$

■ for languages L and L^{\prime}, their concatenation is the language $L L^{\prime}=\left\{x y \mid x \in L\right.$ and $\left.y \in L^{\prime}\right\}$.

Rule Sets

What exactly does $R \subseteq(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$ mean?

- $(V \cup \Sigma)^{*}$: all words over $(V \cup \Sigma)$

■ for languages L and L^{\prime}, their concatenation is the language $L L^{\prime}=\left\{x y \mid x \in L\right.$ and $\left.y \in L^{\prime}\right\}$.
■ $(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*}$: words composed from

Rule Sets

What exactly does $R \subseteq(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$ mean?
■ ($V \cup \Sigma)^{*}$: all words over $(V \cup \Sigma)$
■ for languages L and L^{\prime}, their concatenation is the language $L L^{\prime}=\left\{x y \mid x \in L\right.$ and $\left.y \in L^{\prime}\right\}$.
■ $(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*}$: words composed from

- a word over $(V \cup \Sigma)$,

Rule Sets

What exactly does $R \subseteq(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$ mean?

- $(V \cup \Sigma)^{*}$: all words over $(V \cup \Sigma)$
- for languages L and L^{\prime}, their concatenation is the language $L L^{\prime}=\left\{x y \mid x \in L\right.$ and $\left.y \in L^{\prime}\right\}$.
- $(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*}:$ words composed from

■ a word over $(V \cup \Sigma)$,

- followed by a single variable symbol,

Rule Sets

What exactly does $R \subseteq(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$ mean?
■ ($V \cup \Sigma)^{*}$: all words over $(V \cup \Sigma)$

- for languages L and L^{\prime}, their concatenation is the language $L L^{\prime}=\left\{x y \mid x \in L\right.$ and $\left.y \in L^{\prime}\right\}$.
- $(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*}:$ words composed from
- a word over $(V \cup \Sigma)$,
- followed by a single variable symbol,
- followed by a word over $(V \cup \Sigma)$

Rule Sets

What exactly does $R \subseteq(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$ mean?
■ ($V \cup \Sigma)^{*}$: all words over $(V \cup \Sigma)$

- for languages L and L^{\prime}, their concatenation is the language $L L^{\prime}=\left\{x y \mid x \in L\right.$ and $\left.y \in L^{\prime}\right\}$.
- $(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*}:$ words composed from
- a word over $(V \cup \Sigma)$,
- followed by a single variable symbol,
- followed by a word over $(V \cup \Sigma)$
\rightarrow word over $(V \cup \Sigma)$ containing at least one variable symbol

Rule Sets

What exactly does $R \subseteq(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$ mean?
■ ($V \cup \Sigma)^{*}$: all words over $(V \cup \Sigma)$

- for languages L and L^{\prime}, their concatenation is the language $L L^{\prime}=\left\{x y \mid x \in L\right.$ and $\left.y \in L^{\prime}\right\}$.
- ($V \cup \Sigma)^{*} V(V \cup \Sigma)^{*}$: words composed from
- a word over $(V \cup \Sigma)$,
- followed by a single variable symbol,
- followed by a word over $(V \cup \Sigma)$
\rightarrow word over $(V \cup \Sigma)$ containing at least one variable symbol
- \times : Cartesian product

Rule Sets

What exactly does $R \subseteq(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$ mean?
■ ($V \cup \Sigma)^{*}$: all words over $(V \cup \Sigma)$
■ for languages L and L^{\prime}, their concatenation is the language $L L^{\prime}=\left\{x y \mid x \in L\right.$ and $\left.y \in L^{\prime}\right\}$.
■ $(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*}:$ words composed from

- a word over $(V \cup \Sigma)$,
- followed by a single variable symbol,
- followed by a word over $(V \cup \Sigma)$
\rightarrow word over $(V \cup \Sigma)$ containing at least one variable symbol
- \times : Cartesian product
- $(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$: set of all pairs $\langle x, y\rangle$, where x word over $(V \cup \Sigma)$ with at least one variable and y word over $(V \cup \Sigma)$

Rule Sets

What exactly does $R \subseteq(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$ mean?
■ ($V \cup \Sigma)^{*}$: all words over $(V \cup \Sigma)$
■ for languages L and L^{\prime}, their concatenation is the language $L L^{\prime}=\left\{x y \mid x \in L\right.$ and $\left.y \in L^{\prime}\right\}$.
■ $(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*}:$ words composed from

- a word over $(V \cup \Sigma)$,
- followed by a single variable symbol,
- followed by a word over $(V \cup \Sigma)$
\rightarrow word over $(V \cup \Sigma)$ containing at least one variable symbol
- \times : Cartesian product
- $(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$: set of all pairs $\langle x, y\rangle$, where x word over $(V \cup \Sigma)$ with at least one variable and y word over $(V \cup \Sigma)$
■ Instead of $\langle x, y\rangle$ we usually write rules in the form $x \rightarrow y$.

Rules: Examples

> Example
> Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $V=\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$.

Some examples of rules in $(V \cup \Sigma)^{*} V(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$:

$$
\begin{aligned}
\mathrm{X} & \rightarrow \mathrm{XaY} \\
\mathrm{Yb} & \rightarrow \mathrm{a} \\
\mathrm{XY} & \rightarrow \varepsilon \\
\mathrm{XYZ} & \rightarrow \mathrm{abc} \\
\mathrm{abXc} & \rightarrow \mathrm{XYZ}
\end{aligned}
$$

Derivations

Definition (Derivations)

Let $\langle V, \Sigma, R, S\rangle$ be a grammar. A word $v \in(V \cup \Sigma)^{*}$ can be derived from word $u \in(V \cup \Sigma)^{+}$(written as $u \Rightarrow v$) if
(1) $u=x y z, v=x y^{\prime} z$ with $x, z \in(V \cup \Sigma)^{*}$ and
(2) there is a rule $y \rightarrow y^{\prime} \in R$.

We write: $u \Rightarrow^{*} v$ if v can be derived from u in finitely many steps (i. e., by using n derivations for $n \in \mathbb{N}_{0}$).

Language Generated by a Grammar

Definition (Languages)

The language generated by a grammar $G=\langle V, \Sigma, P, S\rangle$

$$
\mathcal{L}(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}
$$

is the set of all words from Σ^{*} that can be derived from S with finitely many rule applications.

Grammars

> Example (Languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$) $$
L_{1}=\{\mathrm{a}, \mathrm{aa}, \text { aaa, aaaa }, \ldots\}=\{\mathrm{a}\}^{+}
$$

Example grammars: blackboard

Grammars

Example (Languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$)

- $L_{2}=\Sigma^{*}$

Example grammars: blackboard

Grammars

Example (Languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$)

- $L_{3}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 0\right\}=\{\varepsilon, \mathrm{ab}$, aabb, aaabbb,$\ldots\}$

Example grammars: blackboard

Grammars

Example (Languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$)

- $L_{4}=\{\varepsilon\}$

Example grammars: blackboard

Grammars

Example (Languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$)

- $L_{5}=\emptyset$

Example grammars: blackboard

Grammars

Example (Languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$)

$$
\text { - } \begin{aligned}
L_{6} & =\left\{w \in \Sigma^{*} \mid w \text { contains twice as many as as bs }\right\} \\
& =\{\varepsilon, \text { aab }, \text { aba }, \text { baa }, \ldots\}
\end{aligned}
$$

Exercise

Specify a grammar that generates language

$$
L=\left\{w \in\{\mathrm{a}, \mathrm{~b}\}^{*}| | w \mid=3\right\} .
$$

Questions

Questions?

Chomsky Hierarchy

Noam Chomsky

- Avram Noam Chomsky (*1928)
- "the father of modern linguistics"
- American linguist, philosopher, cognitive scientist, social critic, and political activist

- combined linguistics, cognitive science and computer science
- opponent of U.S. involvement in the Vietnam war
- there is a wikipedia page solemnly on his political positions
\rightarrow Organized grammars into the Chomsky hierarchy.

Chomsky Hierarchy

Definition (Chomsky Hierarchy)

■ Every grammar is of type 0 (all rules allowed).

- Grammar is of type 1 (context-sensitive)
if all rules are of the form $\alpha B \gamma \rightarrow \alpha \beta \gamma$
with $B \in V$ and $\alpha, \gamma \in(V \cup \Sigma)^{*}$ and $\beta \in(V \cup \Sigma)^{+}$
- Grammar is of type 2 (context-free) if all rules are of the form $A \rightarrow w$, where $A \in V$ and $w \in(V \cup \Sigma)^{+}$.
- Grammar is of type 3 (regular)
if all rules are of the form $A \rightarrow w$, where $A \in V$ and $w \in \Sigma \cup \Sigma V$.
special case: rule $S \rightarrow \varepsilon$ is always allowed if S is the start variable and never occurs on the right-hand side of any rule.

Chomsky Hierarchy: Examples

Examples: blackboard

Chomsky Hierarchy

Definition (Type 0-3 Languages)

A language $L \subseteq \Sigma^{*}$ is of type 0 (type 1 , type 2, type 3) if there exists a type-0 (type-1, type-2, type-3) grammar G with $\mathcal{L}(G)=L$.

Type k Language: Example (slido)

Example

Consider the language L generated by the grammar $\langle\{\mathrm{F}, \mathrm{A}, \mathrm{N}, \mathrm{C}, \mathrm{D}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \neg, \wedge, \vee,()\}, R, \mathrm{~F}$,
with the following rules R :

$$
\begin{array}{lll}
\mathrm{F} \rightarrow \mathrm{~A} & \mathrm{~A} \rightarrow \mathrm{a} & \mathrm{~N} \rightarrow \neg \mathrm{~F} \\
\mathrm{~F} \rightarrow \mathrm{~N} & \mathrm{~A} \rightarrow \mathrm{~b} & \mathrm{C} \rightarrow(\mathrm{~F} \wedge \mathrm{~F}) \\
\mathrm{F} \rightarrow \mathrm{C} & \mathrm{~A} \rightarrow \mathrm{c} & \mathrm{D} \rightarrow(\mathrm{~F} \vee \mathrm{~F}) \\
\mathrm{F} \rightarrow \mathrm{D} & &
\end{array}
$$

Questions:

■ Is L a type-0 language?

- Is L a type-1 language?

■ Is L a type-2 language?
■ Is L a type-3 language?

Chomsky Hierarchy

Chomsky Hierarchy

Note: Not all languages can be described by grammars. (Proof?)

Questions

Questions?

Summary

Summary

■ Languages are sets of symbol sequences.
■ Grammars are one possible way to specify languages.
■ Language generated by a grammar is the set of all words (of terminal symbols) derivable from the start symbol.
■ Chomsky hierarchy distinguishes between languages at different levels of expressiveness.

