Theory of Computer Science B2. Grammars

DZ. Graiiiiiais

Gabriele Röger

University of Basel

March 8, 2023

Introduction

Introduction •0000000

Reminder: Alphabets and Formal Languages

- \blacksquare An alphabet Σ is a finite non-empty set of symbols.
- \blacksquare A word over Σ is a finite sequence of elements from Σ .
- The empty word is denoted by ε .
- Σ^* denotes the set of all words over Σ .
- Σ^+ denotes the set of all non-empty words over Σ .
- A formal language (over alphabet Σ) is a subset of Σ^* .

Reminder: Finite Automata and Formal Languages

Example

Introduction

The DFA recognizes the language $\{w \in \{0,1\}^* \mid w \text{ ends with } 00\}.$

- A finite automaton defines a language, the language it recognizes.
- The specification of the automaton is always finite.
- The recognized language can be infinite.

Sought: General concepts to define (often infinite) formal languages with finite descriptions.

- today: grammars
- later: more automata, regular expressions, . . .

Grammar: Example

Variables $V = \{S, X, Y\}$ Alphabet $\Sigma = \{a, b, c\}$. Production rules:

$$\begin{array}{lll} S \rightarrow \varepsilon & X \rightarrow aXYc & cY \rightarrow Yc \\ S \rightarrow abc & X \rightarrow abc & bY \rightarrow bb \\ S \rightarrow X & \end{array}$$

Grammar: Example

Introduction

Variables $V = \{S, X, Y\}$ Alphabet $\Sigma = \{a, b, c\}$. Production rules:

$$\begin{array}{lll} \mathsf{S} \to \varepsilon & \mathsf{X} \to \mathsf{a} \mathsf{X} \mathsf{Y} \mathsf{c} & \mathsf{c} \mathsf{Y} \to \mathsf{Y} \mathsf{c} \\ \mathsf{S} \to \mathsf{a} \mathsf{b} \mathsf{c} & \mathsf{X} \to \mathsf{a} \mathsf{b} \mathsf{c} & \mathsf{b} \mathsf{Y} \to \mathsf{b} \mathsf{b} \\ \mathsf{S} \to \mathsf{X} & & & & & & & & & & & & & & \\ \end{array}$$

You start from S and may in each step replace the left-hand side of a rule with the right-hand side of the same rule. This way, derive a word over Σ .

Grammar: Example

Variables $V = \{S, X, Y\}$ Alphabet $\Sigma = \{a, b, c\}$. Production rules:

$$\begin{array}{lll} S \rightarrow \varepsilon & X \rightarrow aXYc & cY \rightarrow Yc \\ S \rightarrow abc & X \rightarrow abc & bY \rightarrow bb \\ S \rightarrow X & \end{array}$$

Exercise

Variables $V = \{S, X, Y\}$ Alphabet $\Sigma = \{a, b, c\}.$ Production rules:

$$S \to \varepsilon$$

$$\mathsf{X} \to \mathsf{a} \mathsf{X} \mathsf{Y} \mathsf{c}$$

$$cY\to Yc$$

$$S \to abc$$
 $X \to abc$

$$X \rightarrow abc$$

$$\mathtt{bY} \to \mathtt{bb}$$

$$\mathsf{S}\to\mathsf{X}$$

Derive word aabbcc starting from S.

- http://www.gameaipro.com/
- GameAlPro 2, chapter 40 Procedural Content Generation: An Overview by Gillian Smith

Questions

Introduction 0000000

Questions?

Definition (Grammars)

A grammar is a 4-tuple $\langle V, \Sigma, R, S \rangle$ with:

- V finite set of variables (nonterminal symbols)
- lacksquare Σ finite alphabet of terminal symbols with $V \cap \Sigma = \emptyset$
- $R \subseteq (V \cup \Sigma)^* V(V \cup \Sigma)^* \times (V \cup \Sigma)^*$ finite set of rules
- $S \in V$ start variable

A rule is sometimes also called a production or a production rule.

What exactly does $R \subseteq (V \cup \Sigma)^* V(V \cup \Sigma)^* \times (V \cup \Sigma)^*$ mean?

 $(V \cup \Sigma)^*$: all words over $(V \cup \Sigma)$

- $(V \cup \Sigma)^*$: all words over $(V \cup \Sigma)$
- for languages L and L', their concatenation is the language $LL' = \{xy \mid x \in L \text{ and } y \in L'\}.$

- $(V \cup \Sigma)^*$: all words over $(V \cup \Sigma)$
- for languages L and L', their concatenation is the language $LL' = \{xy \mid x \in L \text{ and } y \in L'\}.$
- $(V \cup \Sigma)^* V (V \cup \Sigma)^*$: words composed from

- $(V \cup \Sigma)^*$: all words over $(V \cup \Sigma)$
- for languages L and L', their concatenation is the language $LL' = \{xy \mid x \in L \text{ and } y \in L'\}.$
- $(V \cup \Sigma)^* V (V \cup \Sigma)^*$: words composed from
 - \blacksquare a word over $(V \cup \Sigma)$,

- $(V \cup \Sigma)^*$: all words over $(V \cup \Sigma)$
- for languages L and L', their concatenation is the language $LL' = \{xy \mid x \in L \text{ and } y \in L'\}.$
- $(V \cup \Sigma)^* V (V \cup \Sigma)^*$: words composed from
 - \blacksquare a word over $(V \cup \Sigma)$,
 - followed by a single variable symbol,

- $(V \cup \Sigma)^*$: all words over $(V \cup \Sigma)$
- for languages L and L', their concatenation is the language $LL' = \{xy \mid x \in L \text{ and } y \in L'\}.$
- $(V \cup \Sigma)^* V (V \cup \Sigma)^*$: words composed from
 - \blacksquare a word over $(V \cup \Sigma)$,
 - followed by a single variable symbol,
 - followed by a word over $(V \cup \Sigma)$

- $(V \cup \Sigma)^*$: all words over $(V \cup \Sigma)$
- for languages L and L', their concatenation is the language $LL' = \{xy \mid x \in L \text{ and } y \in L'\}.$
- $(V \cup \Sigma)^* V (V \cup \Sigma)^*$: words composed from
 - \blacksquare a word over $(V \cup \Sigma)$,
 - followed by a single variable symbol,
 - followed by a word over $(V \cup \Sigma)$
 - \rightarrow word over $(V \cup \Sigma)$ containing at least one variable symbol

- $(V \cup \Sigma)^*$: all words over $(V \cup \Sigma)$
- for languages L and L', their concatenation is the language $LL' = \{xy \mid x \in L \text{ and } y \in L'\}.$
- $(V \cup \Sigma)^* V (V \cup \Sigma)^*$: words composed from
 - \blacksquare a word over $(V \cup \Sigma)$,
 - followed by a single variable symbol,
 - followed by a word over $(V \cup \Sigma)$
 - \rightarrow word over $(V \cup \Sigma)$ containing at least one variable symbol
- ×: Cartesian product

- $(V \cup \Sigma)^*$: all words over $(V \cup \Sigma)$
- for languages L and L', their concatenation is the language $LL' = \{xy \mid x \in L \text{ and } y \in L'\}.$
- $(V \cup \Sigma)^* V (V \cup \Sigma)^*$: words composed from
 - \blacksquare a word over $(V \cup \Sigma)$,
 - followed by a single variable symbol,
 - followed by a word over $(V \cup \Sigma)$
 - \rightarrow word over $(V \cup \Sigma)$ containing at least one variable symbol
- ×: Cartesian product
- $(V \cup \Sigma)^* V (V \cup \Sigma)^* \times (V \cup \Sigma)^*$: set of all pairs $\langle x, y \rangle$, where x word over $(V \cup \Sigma)$ with at least one variable and y word over $(V \cup \Sigma)$

- $(V \cup \Sigma)^*$: all words over $(V \cup \Sigma)$
- for languages L and L', their concatenation is the language $LL' = \{xy \mid x \in L \text{ and } y \in L'\}.$
- $(V \cup \Sigma)^* V (V \cup \Sigma)^*$: words composed from
 - \blacksquare a word over $(V \cup \Sigma)$,
 - followed by a single variable symbol,
 - followed by a word over $(V \cup \Sigma)$
 - \rightarrow word over $(V \cup \Sigma)$ containing at least one variable symbol
- ×: Cartesian product
- $(V \cup \Sigma)^* V (V \cup \Sigma)^* \times (V \cup \Sigma)^*$: set of all pairs $\langle x, y \rangle$, where x word over $(V \cup \Sigma)$ with at least one variable and y word over $(V \cup \Sigma)$
- Instead of $\langle x, y \rangle$ we usually write rules in the form $x \to y$.

Rules: Examples

Example

Let $\Sigma = \{a, b, c\}$ and $V = \{X, Y, Z\}$.

Some examples of rules in $(V \cup \Sigma)^*V(V \cup \Sigma)^* \times (V \cup \Sigma)^*$:

$$X \to XaY$$

$$Y\mathtt{b}\to\mathtt{a}$$

$$\mathsf{XY} \to \varepsilon$$

$$XYZ \rightarrow abc$$

$$\mathtt{abXc} o \mathsf{XYZ}$$

Derivations

Definition (Derivations)

Let $\langle V, \Sigma, R, S \rangle$ be a grammar. A word $v \in (V \cup \Sigma)^*$ can be derived from word $u \in (V \cup \Sigma)^+$ (written as $u \Rightarrow v$) if

- u = xyz, v = xy'z with $x, z \in (V \cup \Sigma)^*$ and
- ② there is a rule $y \to y' \in R$.

We write: $u \Rightarrow^* v$ if v can be derived from u in finitely many steps (i. e., by using n derivations for $n \in \mathbb{N}_0$).

Definition (Languages)

The language generated by a grammar $G = \langle V, \Sigma, P, S \rangle$

$$\mathcal{L}(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

is the set of all words from Σ^* that can be derived from S with finitely many rule applications.

Example (Languages over $\Sigma = \{a, b\}$)

■ $L_1 = \{a, aa, aaa, aaaa, ...\} = \{a\}^+$

000000000

Example (Languages over $\Sigma = \{a, b\}$)

$$L_2 = \Sigma^*$$

Example (Languages over $\Sigma = \{a, b\}$)

■ $L_3 = \{a^n b^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, \dots\}$

Example (Languages over $\Sigma = \{a, b\}$)

$$L_4 = \{\varepsilon\}$$

Example (Languages over $\Sigma = \{a, b\}$)

 $L_5 = \emptyset$

Example (Languages over $\Sigma = \{a, b\}$)

■ $L_6 = \{ w \in \Sigma^* \mid w \text{ contains twice as many as as bs} \}$ = $\{ \varepsilon, \text{aab}, \text{aba}, \text{baa}, \dots \}$

Exercise

Specify a grammar that generates language

$$L = \{ w \in \{ a, b \}^* \mid |w| = 3 \}.$$

Questions

Questions?

Chomsky Hierarchy

Noam Chomsky

- Avram Noam Chomsky (*1928)
- "the father of modern linguistics"
- American linguist, philosopher, cognitive scientist, social critic, and political activist

- combined linguistics, cognitive science and computer science
- opponent of U.S. involvement in the Vietnam war
- there is a wikipedia page solemnly on his political positions
- → Organized grammars into the Chomsky hierarchy.

Chomsky Hierarchy

Definition (Chomsky Hierarchy)

- Every grammar is of type 0 (all rules allowed).
- Grammar is of type 1 (context-sensitive) if all rules are of the form $\alpha B \gamma \to \alpha \beta \gamma$ with $B \in V$ and $\alpha, \gamma \in (V \cup \Sigma)^*$ and $\beta \in (V \cup \Sigma)^+$

Chomsky Hierarchy

- Grammar is of type 2 (context-free) if all rules are of the form $A \rightarrow w$, where $A \in V$ and $w \in (V \cup \Sigma)^+$.
- Grammar is of type 3 (regular) if all rules are of the form $A \rightarrow w$, where $A \in V$ and $w \in \Sigma \cup \Sigma V$.

special case: rule $S \to \varepsilon$ is always allowed if S is the start variable and never occurs on the right-hand side of any rule.

Chomsky Hierarchy

Examples: blackboard

Definition (Type 0–3 Languages)

A language $L\subseteq \Sigma^*$ is of type 0 (type 1, type 2, type 3) if there exists a type-0 (type-1, type-2, type-3) grammar G with $\mathcal{L}(G)=L$.

Example

Consider the language L generated by the grammar $\langle \{F, A, N, C, D\}, \{a, b, c, \neg, \land, \lor, (,)\}, R, F \rangle$ with the following rules *R*:

Chomsky Hierarchy

Questions:

- Is L a type-0 language?
- Is L a type-1 language?
- Is L a type-2 language?
- Is L a type-3 language?

Chomsky Hierarchy

Note: Not all languages can be described by grammars. (Proof?)

Questions

Questions?

Summary

Summary

- Languages are sets of symbol sequences.
- Grammars are one possible way to specify languages.
- Language generated by a grammar is the set of all words (of terminal symbols) derivable from the start symbol.
- Chomsky hierarchy distinguishes between languages at different levels of expressiveness.