Theory of Computer Science
B2. Grammars

Gabriele Roger

University of Basel

March 8, 2023

Introduction
©0000000

Introduction

Introduction Gramm (@ sky Hierarchy Summar

0O@000000

Reminder: Alphabets and Formal Languages

An alphabet ¥ is a finite non-empty set of symbols.

A word over ¥ is a finite sequence of elements from .

> * denotes the set of all words over X.

[
[

m The empty word is denoted by ¢.

[

m Y " denotes the set of all non-empty words over .
[

A formal language (over alphabet ¥) is a subset of X*.

Introduction
00®00000

The DFA recognizes the language
(=)o {w € {0,1}* | w ends with 00}

m A finite automaton defines a language,
the language it recognizes.

m The specification of the automaton is always finite.

m The recognized language can be infinite.

Introduction Gra
000@0000 00

Summar

Other Ways to Specify Formal Languages?

Sought: General concepts to define
(often infinite) formal languages
with finite descriptions.

m today: grammars

m later: more automata, regular expressions, ...

Introduction Gramm (@ sky Hierarchy Summar

[e]e]e]e] lelele)

Grammar: Example

Variables V = {S,X,Y}
Alphabet ¥ = {a, b, c}.
Production rules:

S —e¢ X — aXYc cY = Yc
S — abc X — abc bY — bb
S—X

Grammar: Example
Variables V = {S,X,Y}

Alphabet ¥ = {a, b, c}.
Production rules:

S —e¢ X — aXYc cY = Yc
S — abc X — abc bY — bb
S—X

You start from S and may in each step replace the left-hand side of
a rule with the right-hand side of the same rule. This way, derive a
word over ¥.

Introduction Gramm (@ sky Hierarchy Summar

[e]e]e]e] lelele)

Grammar: Example

Variables V = {S,X,Y}
Alphabet ¥ = {a, b, c}.
Production rules:

S —e¢ X — aXYc cY = Yc
S — abc X — abc bY — bb
S—X

Introduction
00000800

Summar

Exercise

Variables V = {S, X, Y}
Alphabet ¥ = {a, b, c}.
Production rules:

S—e¢ X — aXYc cY = Yc
S — abc X — abc bY — bb
S—X

Derive word aabbcc starting from S.

Application: Content Generation in Games

Collected Wisdom
ofiGame Al %

m http://www.gameaipro.com/ T)

m GameAlPro 2, chapter 40
Procedural Content Generation:
An Overview by Gillian Smith

STEVE RABI|

http://www.gameaipro.com/
http://www.gameaipro.com/GameAIPro2/GameAIPro2_Chapter40_Procedural_Content_Generation_An_Overview.pdf
http://www.gameaipro.com/GameAIPro2/GameAIPro2_Chapter40_Procedural_Content_Generation_An_Overview.pdf

Introduction

0000000

Questions

o

~

Questions?

Grammars
©00000000

Grammars

Grammars Summar

0@0000000

Grammars

Definition (Grammars)

A grammar is a 4-tuple (V, X, R, S) with:
m V finite set of variables (nonterminal symbols)
m Y finite alphabet of terminal symbols with VN'X = ()
B RC(VUD)*V(VUI)* x (VUZI)* finite set of rules
m S € V start variable)

A rule is sometimes also called a production or a production rule.

Grammars
00@000000

Rule Sets

What exactly does R C (VU X)"V(VUX)* x (VUZX)" mean?
m (VUX)*: all words over (VUYX)

Grammars

008000000

Rule Sets

What exactly does R C (VU X)"V(VUX)* x (VUZX)" mean?
m (VUX)*: all words over (VUYX)

m for languages L and L’, their concatenation is the language
L' ={xy|xeLandye L'}

Grammars C erarchy Summar

008000000

Rule Sets

What exactly does R C (VU X)"V(VUX)* x (VUZX)" mean?
m (VUX)*: all words over (VUYX)

m for languages L and L’, their concatenation is the language
L' ={xy|xeLandye L'}
B (VUX)*V(VUZX)": words composed from

Grammars

008000000

Rule Sets

What exactly does R C (VU X)"V(VUX)* x (VUZX)" mean?
m (VUX)*: all words over (VUYX)

m for languages L and L’, their concatenation is the language
L' ={xy|xeLandye L'}
B (VUX)*V(VUZX)": words composed from
m a word over (VUYX),

Grammars

008000000

Rule Sets

What exactly does R C (VU X)"V(VUX)* x (VUZX)" mean?
m (VUX)*: all words over (VUYX)
m for languages L and L’, their concatenation is the language
L' ={xy|xeLandye L'}
B (VUX)*V(VUZX)": words composed from

m a word over (VUYX),
m followed by a single variable symbol,

Grammars

008000000

Rule Sets

What exactly does R C (VU X)"V(VUX)* x (VUZX)" mean?
m (VUX)*: all words over (VUYX)
m for languages L and L’, their concatenation is the language
L' ={xy|xeLandye L'}
B (VUX)*V(VUZX)": words composed from

m a word over (VUYX),
m followed by a single variable symbol,
m followed by a word over (V U X)

Grammars Chomsky Hierarchy Summar
00@000000 © 00

Rule Sets

What exactly does R C (VU X)"V(VUX)* x (VUZX)" mean?
m (VUX)*: all words over (VUYX)
m for languages L and L’, their concatenation is the language
L' ={xy|xeLandye L'}
B (VUX)*V(VUZX)": words composed from

m a word over (VUYX),
m followed by a single variable symbol,
m followed by a word over (V U X)

— word over (V U X) containing at least one variable symbol

Grammars Chomsky Hierarchy Summar
00@000000 © 00

Rule Sets

What exactly does R C (VU X)"V(VUX)* x (VUZX)" mean?
m (VUX)*: all words over (VUYX)

m for languages L and L’, their concatenation is the language
L' ={xy|xeLandye L'}
B (VUX)*V(VUZX)": words composed from

m a word over (VUYX),
m followed by a single variable symbol,
m followed by a word over (V U X)

— word over (V U X) containing at least one variable symbol

m x: Cartesian product

Grammars

008000000

Rule Sets

What exactly does R C (VU X)"V(VUX)* x (VUZX)" mean?
m (VUX)*: all words over (VUYX)
m for languages L and L’, their concatenation is the language
L' ={xy|xeLandye L'}
B (VUX)*V(VUZX)": words composed from

m a word over (VUYX),
m followed by a single variable symbol,
m followed by a word over (V U X)

— word over (V U X) containing at least one variable symbol

m x: Cartesian product

(VUL V(VUXD) x (VUX)*: set of all pairs (x,y), where
x word over (V UX) with at least one variable and
y word over (V UX)

Grammars

008000000

Rule Sets

What exactly does R C (VU X)"V(VUX)* x (VUZX)" mean?
m (VUX)*: all words over (VUYX)
m for languages L and L’, their concatenation is the language
L' ={xy|xeLandye L'}
B (VUX)*V(VUZX)": words composed from

m a word over (VUYX),
m followed by a single variable symbol,
m followed by a word over (V U X)

— word over (V U X) containing at least one variable symbol
m x: Cartesian product
(VUL V(VUXD) x (VUX)*: set of all pairs (x,y), where
x word over (V UX) with at least one variable and
y word over (V UX)

m Instead of (x,y) we usually write rules in the form x — y.

Grammars C e Summary

000@00000

Rules: Examples

Let ¥ = {a,b,c} and V = {X)Y,Z}.
Some examples of rules in (VUX)*V(VUX)* x (VUX)*"

X — XaY
Yb — a
XY — €

XYZ — abc
abXc — XYZ

Introduction Grammars
00000000 0000@0000

Summary

Derivations

Definition (Derivations)

Let (V,X,R,S) be a grammar. A word v € (V UX)* can be
derived from word u € (V UX)" (written as u = v) if

Q u=xyz, v=xy'z with x,z € (VUX)* and

Q thereisaruley — y' € R.
We write: u =" v if v can be derived from u in finitely many steps
(i.e., by using n derivations for n € Np).

V.

Summar

Grammars
000008000

Language Generated by a Grammar

Definition (Languages)
The language generated by a grammar G = (V, L, P, S)

L(G)={weX*|S="w}

is the set of all words from ¥ * that can be derived from S
with finitely many rule applications.

Grammars

000000e00

Grammars

Example (Languages over ¥ = {a, b})

m L; = {a,aa,aaa aaaa,...} = {a}"

Example grammars: blackboard

Grammars Chomsky Hierarchy

000000e00

Grammars

Example (Languages over ¥ = {a,b})
ml,=3

Example grammars: blackboard

Grammars

000000e00

Grammars

Example (Languages over ¥ = {a, b})
m [3={a"" | n >0} = {¢,ab, aabb, aaabbb,... }

Example grammars: blackboard

Grammars

000000e00

Grammars

Example (Languages over ¥ = {a, b})
|| L4 = {E}

Example grammars: blackboard

Grammars

000000e00

Grammars

Example (Languages over ¥ = {a,b})

IL5:®

Example grammars: blackboard

Grammars

000000e00

Grammars

Example (Languages over ¥ = {a,b})

m Lg = {w € I* | w contains twice as many as as bs}
= {e, aab, aba, baa, ... }

Example grammars: blackboard

Grammars C erarchy Summar

000000080

Exercise

Specify a grammar that generates language

L={we {ab}||w] =3

Grammars

00000000e

Questions

Questions?

Chomsky Hierarchy
0000000

Chomsky Hierarchy

Chomsky Hierarchy Summar

O®000000

Noam Chomsky

m Avram Noam Chomsky (*1928)
m "the father of modern linguistics”

m American linguist, philosopher,
cognitive scientist, social critic,
and political activist

CC BY 2.0 / Andrew Rusk

m combined linguistics, cognitive science and computer science
m opponent of U.S. involvement in the Vietnam war

m there is a wikipedia page solemnly on his political positions

— Organized grammars into the Chomsky hierarchy.

https://en.wikipedia.org/wiki/Political_positions_of_Noam_Chomsky

Introduction Grammars Chomsky Hierarchy Summary
00800000

Chomsky Hierarchy

Definition (Chomsky Hierarchy)

m Every grammar is of type 0 (all rules allowed).

m Grammar is of type 1 (context-sensitive)
if all rules are of the form aBy — a3y
with B € V and a,y € (VUX)* and B € (VUX)T

m Grammar is of type 2 (context-free)
if all rules are of the form A — w,
where Ac Vand we (VUX)T.

m Grammar is of type 3 (regular)
if all rules are of the form A — w,
where Ae¢ Vandwe X UXV.

special case: rule S — ¢ is always allowed if S is the start variable
and never occurs on the right-hand side of any rule.

Chomsky Hierarchy
[e]e]e] lelelele]

Chomsky Hierarchy: Examples

Examples: blackboard

odt n Chomsky Hierarchy
00000000 00 [e]o]e]e] lelele)

Chomsky Hierarchy

Definition (Type 0-3 Languages)

A language L C X* is of type 0 (type 1, type 2, type 3)
if there exists a type-0 (type-1, type-2, type-3) grammar G
with £(G) = L.

Chomsky Hierarchy

[e]o]e]e]e] lele)

Type k Language: Example (slido)

Consider the language L generated by the grammar
<{F7 Aa N7 Ca D}7 {aa b,c, 7, AV, (7)}a Ra F>
with the following rules R:

F—A A—a N — —F
F—N A—b C—(FAF)
Ft A—c D— (FVF)
F—D

Questions:

m Is L a type-0 language?
m Is L a type-1 language?

§
2

m Is L a type-2 language?

m Is [a type-3 language?

Introduction ar: Chomsky Hierarchy

[e]o]e]e]e]e] o)

Chomsky Hierarchy

regular languages (type 3)]

context free languages (type 2)

context sensitive languages (type 1)

Type-0 languages

All languages

Chomsky Hierarchy

[e]o]e]e]e]e] o)

Chomsky Hierarchy

regular languages (type 3)]

context free languages (type 2)

context sensitive languages (type 1)

Type-0 languages

All languages

Note: Not all languages can be described by grammars. (Proof?)

Chomsky Hierarchy

O000000e

Questions

o

~

Questions?

Summarn
0

Summary

Summary
o

Summary

Languages are sets of symbol sequences.

Grammars are one possible way to specify languages.

Language generated by a grammar is the set of all words
(of terminal symbols) derivable from the start symbol.

Chomsky hierarchy distinguishes between languages
at different levels of expressiveness.

	Introduction
	

	Grammars
	

	Chomsky Hierarchy
	

	Summary
	

