

Theory of Computer March 8, 2023 — B2. Gramma	r Science ars		
B2.1 Introduction	I		
B2.2 Grammars			
B2.3 Chomsky Hi	erarchy		
B2.4 Summary			
Gabriele Röger (University of Basel)	Theory of Computer Science	March 8, 2023 2 /	25

Gabriele Röger (University of Basel)

March 8, 2023

6 / 25

Application: Content Generation in Games

http://www.gameaipro.com/

► GameAIPro 2, chapter 40 Procedural Content Generation: An Overview by Gillian Smith

Gabriele Röger (University of Basel)

Theory of Computer Science

March 8, 2023 9 / 25

Introduction

B2. Grammars

B2.2 Gramma	ars		
Gabriele Röger (University of Basel)	Theory of Computer Science	March 8, 2023	10 / 25

В	2. Grammars	Grammars
	Rule Sets	
	What exactly does $R \subseteq (V \cup \Sigma)^* V (V \cup \Sigma)^* \times (V \cup \Sigma)^*$ mean?	
	• $(V \cup \Sigma)^*$: all words over $(V \cup \Sigma)$	
	▶ for languages <i>L</i> and <i>L'</i> , their concatenation is the language $LL' = \{xy \mid x \in L \text{ and } y \in L'\}.$	
	• $(V \cup \Sigma)^* V (V \cup \Sigma)^*$: words composed from	
	 a word over (V ∪ Σ), followed by a single variable symbol, followed by a word over (V ∪ Σ) 	
	$ ightarrow$ word over $(V\cup\Sigma)$ containing at least one variable symbol	Ы
	X: Cartesian product	
	 (V ∪ Σ)*V(V ∪ Σ)* × (V ∪ Σ)*: set of all pairs ⟨x, y⟩, when x word over (V ∪ Σ) with at least one variable and y word over (V ∪ Σ) 	re
	▶ Instead of $\langle x, y \rangle$ we usually write rules in the form $x \to y$.	
	Gabriele Röger (University of Basel) Theory of Computer Science March 8, 2023	12 / 25

Grammars

Rules: Examples

Example

Let $\Sigma = \{a, b, c\}$ and $V = \{X, Y, Z\}$. Some examples of rules in $(V \cup \Sigma)^* V (V \cup \Sigma)^* \times (V \cup \Sigma)^*$:

 $X \rightarrow XaY$ $Yb \rightarrow a$ $XY \rightarrow \varepsilon$ $XYZ \rightarrow abc$ $abXc \rightarrow XYZ$

Gabriele Röger (University of Basel)

Theory of Computer Science

March 8, 2023

13 / 25

B2. Grammars Grammars Language Generated by a Grammar Definition (Languages) The language generated by a grammar $G = \langle V, \Sigma, P, S \rangle$ $\mathcal{L}(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$ is the set of all words from Σ^* that can be derived from Swith finitely many rule applications.

B2. Grammars Grammars Derivations Definition (Derivations) Let $\langle V, \Sigma, R, S \rangle$ be a grammar. A word $v \in (V \cup \Sigma)^*$ can be derived from word $u \in (V \cup \Sigma)^+$ (written as $u \Rightarrow v$) if **1** u = xyz, v = xy'z with $x, z \in (V \cup \Sigma)^*$ and **2** there is a rule $v \to v' \in R$. We write: $u \Rightarrow^* v$ if v can be derived from u in finitely many steps (i. e., by using *n* derivations for $n \in \mathbb{N}_0$). Gabriele Röger (University of Basel) Theory of Computer Science March 8, 2023 14 / 25

Example grammars: blackboard

Grammars

B2. Grammars

Exercise

Grammars

B2. Grammars

Specify a grammar that generates language

B2. Grammars

Noam Chomsky

- Avram Noam Chomsky (*1928)
- "the father of modern linguistics"
- American linguist, philosopher, cognitive scientist, social critic, and political activist

- combined linguistics, cognitive science and computer science
- opponent of U.S. involvement in the Vietnam war
- there is a wikipedia page solemnly on his political positions
- \rightarrow Organized grammars into the Chomsky hierarchy.

B2.3 Choms	ky Hierarchy		
Gabriele Röger (University of Basel)	Theory of Computer Science	March 8, 2023	18 / 25

Gabriele Röger (University of Basel)

Chomsky Hierarchy

Gabriele Röger (University of Basel)

Chomsky Hierarchy

Chomsky Hierarchy

Chomsky Hierarchy

Definition (Type 0–3 Languages)

A language $L \subseteq \Sigma^*$ is of type 0 (type 1, type 2, type 3) if there exists a type-0 (type-1, type-2, type-3) grammar G with $\mathcal{L}(G) = L$.

Gabriele Röger (University of Basel)

Theory of Computer Science

March 8, 2023

21 / 25


```
B2. Grammars
```

Type k Language: Example (slido)

Example

Consider the language *L* generated by the grammar $\langle \{F, A, N, C, D\}, \{a, b, c, \neg, \land, \lor, (,)\}, R, F \rangle$ with the following rules *R*:

	$F\toA$	$A \to \mathtt{a}$	$N \to \negF$	
	$F\toN$	$A \to \mathtt{b}$	$C \to (F \land F)$	
	$F\toC$	$A \to c$	$D \to (F \lor F)$	
	$F\toD$			
Qı	iestions:			
	Is L a type-0 lang	uage?		
	ls L a type-1 lang	uage?		
	Is L a type-2 lang	uage?		
	Is L a type-3 lang	uage?		
Gabriele Rög	ger (University of Basel)	Theory of Computer Scie	nce March 8, 2023	22 / 25

