Theory of Computer Science B2. Grammars

Gabriele Röger

University of Basel

March 8, 2023

Theory of Computer Science March 8, 2023 — B2. Grammars

B2.1 Introduction

B2.2 Grammars

B2.3 Chomsky Hierarchy

B2.4 Summary

B2.1 Introduction

Reminder: Alphabets and Formal Languages

- ightharpoonup An alphabet Σ is a finite non-empty set of symbols.
- ightharpoonup A word over Σ is a finite sequence of elements from Σ .
- ▶ The empty word is denoted by ε .
- $ightharpoonup \Sigma^*$ denotes the set of all words over Σ .
- $ightharpoonup \Sigma^+$ denotes the set of all non-empty words over Σ .
- ightharpoonup A formal language (over alphabet Σ) is a subset of Σ*.

Reminder: Finite Automata and Formal Languages

- A finite automaton defines a language, the language it recognizes.
- ▶ The specification of the automaton is always finite.
- ► The recognized language can be infinite.

Other Ways to Specify Formal Languages?

Sought: General concepts to define (often infinite) formal languages with finite descriptions.

- ► today: grammars
- later: more automata, regular expressions, . . .

Grammar: Example

Variables $V = \{S, X, Y\}$ Alphabet $\Sigma = \{a, b, c\}$. Production rules:

$$\begin{array}{lll} \mathsf{S} \to \varepsilon & \mathsf{X} \to \mathsf{a} \mathsf{X} \mathsf{Y} \mathsf{c} & \mathsf{c} \mathsf{Y} \to \mathsf{Y} \mathsf{c} \\ \mathsf{S} \to \mathsf{a} \mathsf{b} \mathsf{c} & \mathsf{X} \to \mathsf{a} \mathsf{b} \mathsf{c} & \mathsf{b} \mathsf{Y} \to \mathsf{b} \mathsf{b} \\ \mathsf{S} \to \mathsf{X} & & & & & & & & & & & & & & \\ \end{array}$$

You start from S and may in each step replace the left-hand side of a rule with the right-hand side of the same rule. This way, derive a word over Σ .

Exercise

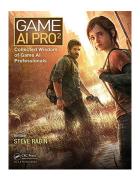
Variables $V = \{S, X, Y\}$ Alphabet $\Sigma = \{a, b, c\}$. Production rules:

$$\begin{array}{lll} \mathsf{S} \to \varepsilon & \mathsf{X} \to \mathsf{a} \mathsf{X} \mathsf{Y} \mathsf{c} & \mathsf{c} \mathsf{Y} \to \mathsf{Y} \mathsf{c} \\ \mathsf{S} \to \mathsf{a} \mathsf{b} \mathsf{c} & \mathsf{X} \to \mathsf{a} \mathsf{b} \mathsf{c} & \mathsf{b} \mathsf{Y} \to \mathsf{b} \mathsf{b} \\ \mathsf{S} \to \mathsf{X} & & & & & & & & & & & & & & & & \end{array}$$

Derive word aabbcc starting from S.

Application: Content Generation in Games

- http://www.gameaipro.com/
- GameAIPro 2, chapter 40
 Procedural Content Generation:
 An Overview by Gillian Smith



B2.2 Grammars

Grammars

Definition (Grammars)

A grammar is a 4-tuple $\langle V, \Sigma, R, S \rangle$ with:

- V finite set of variables (nonterminal symbols)
- $ightharpoonup \Sigma$ finite alphabet of terminal symbols with $V \cap \Sigma = \emptyset$
- $ightharpoonup R \subseteq (V \cup \Sigma)^* V (V \cup \Sigma)^* \times (V \cup \Sigma)^*$ finite set of rules
- \triangleright $S \in V$ start variable

A rule is sometimes also called a production or a production rule.

Rule Sets

What exactly does $R \subseteq (V \cup \Sigma)^* V(V \cup \Sigma)^* \times (V \cup \Sigma)^*$ mean?

- ▶ $(V \cup \Sigma)^*$: all words over $(V \cup \Sigma)$
- ▶ for languages L and L', their concatenation is the language $LL' = \{xy \mid x \in L \text{ and } y \in L'\}.$
- ▶ $(V \cup \Sigma)^* V(V \cup \Sigma)^*$: words composed from
 - ightharpoonup a word over $(V \cup \Sigma)$,
 - followed by a single variable symbol,
 - ▶ followed by a word over $(V \cup \Sigma)$
 - ightarrow word over $(V \cup \Sigma)$ containing at least one variable symbol
- X: Cartesian product
- ▶ $(V \cup \Sigma)^* V(V \cup \Sigma)^* \times (V \cup \Sigma)^*$: set of all pairs $\langle x, y \rangle$, where x word over $(V \cup \Sigma)$ with at least one variable and y word over $(V \cup \Sigma)$
- ▶ Instead of $\langle x, y \rangle$ we usually write rules in the form $x \to y$.

Rules: Examples

Example

Let $\Sigma = \{a, b, c\}$ and $V = \{X, Y, Z\}$.

Some examples of rules in $(V \cup \Sigma)^*V(V \cup \Sigma)^* \times (V \cup \Sigma)^*$:

$$X o XaY$$
 $Yb o a$
 $XY o \varepsilon$
 $XYZ o abc$
 $abXc o XYZ$

Derivations

Definition (Derivations)

Let $\langle V, \Sigma, R, S \rangle$ be a grammar. A word $v \in (V \cup \Sigma)^*$ can be derived from word $u \in (V \cup \Sigma)^+$ (written as $u \Rightarrow v$) if

- **1** u = xyz, v = xy'z with $x, z \in (V \cup \Sigma)^*$ and
- 2 there is a rule $y \to y' \in R$.

We write: $u \Rightarrow^* v$ if v can be derived from u in finitely many steps (i. e., by using n derivations for $n \in \mathbb{N}_0$).

Language Generated by a Grammar

Definition (Languages)

The language generated by a grammar $G = \langle V, \Sigma, P, S \rangle$

$$\mathcal{L}(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

is the set of all words from Σ^* that can be derived from S with finitely many rule applications.

Grammars

```
Example (Languages over \Sigma = \{a, b\})

• L_1 = \{a, aa, aaa, aaaa, \dots\} = \{a\}^+

• L_2 = \Sigma^*

• L_3 = \{a^n b^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, \dots\}

• L_4 = \{\varepsilon\}

• L_5 = \emptyset

• L_6 = \{w \in \Sigma^* \mid w \text{ contains twice as many as as bs}\}

• \{\varepsilon, aab, aba, baa, \dots\}
```

Example grammars: blackboard

Exercise

Specify a grammar that generates language

$$L = \{w \in \{\mathtt{a},\mathtt{b}\}^* \mid |w| = 3\}.$$

B2.3 Chomsky Hierarchy

Noam Chomsky

- Avram Noam Chomsky (*1928)
- "the father of modern linguistics"
- American linguist, philosopher, cognitive scientist, social critic, and political activist

- combined linguistics, cognitive science and computer science
- opponent of U.S. involvement in the Vietnam war
- there is a wikipedia page solemnly on his political positions
- → Organized grammars into the Chomsky hierarchy.

Chomsky Hierarchy

Definition (Chomsky Hierarchy)

- ► Every grammar is of type 0 (all rules allowed).
- Frammar is of type 1 (context-sensitive) if all rules are of the form $\alpha B \gamma \to \alpha \beta \gamma$ with $B \in V$ and $\alpha, \gamma \in (V \cup \Sigma)^*$ and $\beta \in (V \cup \Sigma)^+$
- Frammar is of type 2 (context-free) if all rules are of the form $A \to w$, where $A \in V$ and $w \in (V \cup \Sigma)^+$.
- For a first of type 3 (regular) if all rules are of the form $A \rightarrow w$, where $A \in V$ and $w \in \Sigma \cup \Sigma V$.

special case: rule $S \to \varepsilon$ is always allowed if S is the start variable and never occurs on the right-hand side of any rule.

Chomsky Hierarchy

Definition (Type 0–3 Languages)

A language $L \subseteq \Sigma^*$ is of type 0 (type 1, type 2, type 3) if there exists a type-0 (type-1, type-2, type-3) grammar G with $\mathcal{L}(G) = L$.

Type *k* Language: Example (slido)

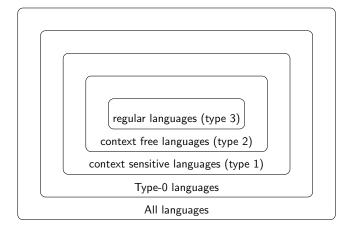
Example

Consider the language L generated by the grammar $\{\{F,A,N,C,D\},\{a,b,c,\neg,\wedge,\vee,(,)\},R,F\}$ with the following rules R:

Questions:

- ► Is L a type-0 language?
- ► Is L a type-1 language?
- ► Is *L* a type-2 language?
- ► Is *L* a type-3 language?

Chomsky Hierarchy



Note: Not all languages can be described by grammars. (Proof?)

B2. Grammars Summary

B2.4 Summary

B2. Grammars Summary

Summary

- Languages are sets of symbol sequences.
- Grammars are one possible way to specify languages.
- Language generated by a grammar is the set of all words (of terminal symbols) derivable from the start symbol.
- Chomsky hierarchy distinguishes between languages at different levels of expressiveness.