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Course Contents

Parts of the course:

A. background
▷ mathematical foundations and proof techniques

B. automata theory and formal languages
(Automatentheorie und formale Sprachen)
▷ What is a computation?

C. Turing computability (Turing-Berechenbarkeit)
▷ What can be computed at all?

D. complexity theory (Komplexitätstheorie)
▷ What can be computed efficiently?

E. more computability theory (mehr Berechenbarkeitheorie)
▷ Other models of computability
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A Controller for a Turnstile

CC BY-SA 3.0, author: Stolbovsky

simple access control

card reader and push sensor

card can either be valid or invalid

locked unlocked
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validcard
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invalidcard
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Finite automata are a good model for computers
with very limited memory.
Where can the turnstile controller store information
about what it has seen in the past?

We will not consider automata that run forever
but that process a finite input sequence and
then classify it as accepted or not.

Before we get into the details, we need some background on
formal languages to formalize what is a valid input sequence.
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Alphabets and Formal Languages
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Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ.
The empty word (the empty sequence of elements) is denoted by ε.
Σ∗ denotes the set of all words over Σ.
Σ+ (= Σ∗ \ {ε}) denotes the set of all non-empty words over Σ.

We write |w | for the length of a word w .

A formal language (over alphabet Σ) is a subset of Σ∗.

Example

Σ = {a, b}

Σ∗ = {ε, a, b, aa, ab, ba, bb, . . . }
|aba| = 3, |b| = 1, |ε| = 0



Introduction Alphabets and Formal Languages DFAs NFAs DFAs vs. NFAs Summary

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ.
The empty word (the empty sequence of elements) is denoted by ε.
Σ∗ denotes the set of all words over Σ.
Σ+ (= Σ∗ \ {ε}) denotes the set of all non-empty words over Σ.

We write |w | for the length of a word w .

A formal language (over alphabet Σ) is a subset of Σ∗.

Example

Σ = {a, b}
Σ∗ = {ε, a, b, aa, ab, ba, bb, . . . }

|aba| = 3, |b| = 1, |ε| = 0



Introduction Alphabets and Formal Languages DFAs NFAs DFAs vs. NFAs Summary

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ.
The empty word (the empty sequence of elements) is denoted by ε.
Σ∗ denotes the set of all words over Σ.
Σ+ (= Σ∗ \ {ε}) denotes the set of all non-empty words over Σ.

We write |w | for the length of a word w .

A formal language (over alphabet Σ) is a subset of Σ∗.

Example

Σ = {a, b}
Σ∗ = {ε, a, b, aa, ab, ba, bb, . . . }
|aba| = 3, |b| = 1, |ε| = 0



Introduction Alphabets and Formal Languages DFAs NFAs DFAs vs. NFAs Summary

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ.
The empty word (the empty sequence of elements) is denoted by ε.
Σ∗ denotes the set of all words over Σ.
Σ+ (= Σ∗ \ {ε}) denotes the set of all non-empty words over Σ.

We write |w | for the length of a word w .

A formal language (over alphabet Σ) is a subset of Σ∗.

Example

Σ = {a, b}
Σ∗ = {ε, a, b, aa, ab, ba, bb, . . . }
|aba| = 3, |b| = 1, |ε| = 0



Introduction Alphabets and Formal Languages DFAs NFAs DFAs vs. NFAs Summary

Languages: Examples

Example (Languages over Σ = {a, b})
S1 = {a, aa, aaa, aaaa, . . . } = {a}+

S2 = Σ∗

S3 = {anbn | n ≥ 0} = {ε, ab, aabb, aaabbb, . . . }
S4 = {ε}
S5 = ∅
S6 = {w ∈ Σ∗ | w contains twice as many as as bs}

S6

= {ε, aab, aba, baa, . . . }
S7 = {w ∈ Σ∗ | |w | = 3}

S6

= {aaa, aab, aba, baa, bba, bab, abb, bbb}
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Exercise (slido)

Consider Σ = {push, validcard}.

What is |pushvalidcard|?
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Questions

Questions?
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DFAs
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Finite Automaton: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0,

q1, q0, q0, q1, q2.
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Finite Automata: Terminology and Notation

q0q1 q2
0

1

0

1

0

1

states Q = {q0, q1, q2}
input alphabet Σ = {0, 1}
transition function δ

start state q0

accept states {q2}

δ(q0, 0) = q1

δ(q0, 1) = q0

δ(q1, 0) = q2

δ(q1, 1) = q0

δ(q2, 0) = q2

δ(q2, 1) = q0

δ 0 1

q0 q1 q0
q1 q2 q0
q2 q2 q0

table form of δ
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Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple
M = ⟨Q,Σ, δ, q0,F ⟩ where

Q is the finite set of states

Σ is the input alphabet

δ : Q × Σ → Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states (or final states)
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DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in
an accept state.

Definition (Words Accepted by a DFA)

DFA M = ⟨Q,Σ, δ, q0,F ⟩ accepts the word w = a1 . . . an
if there is a sequence of states q′0, . . . , q

′
n ∈ Q with

1 q′0 = q0,

2 δ(q′i−1, ai ) = q′i for all i ∈ {1, . . . , n} and

3 q′n ∈ F .
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Example

Example

q0q1 q2
0

1

0

1

0

1
accepts:
00

10010100

01000

does not accept:
ε
1001010

010001
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Exercise (slido)

Consider the following DFA:

q0 q1 q2 q3

b,c

a

a

b

c a

b

c

a,b,c

Which of the following words does it accept?

abc

ababcb

babbc
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DFA: Recognized Language

Definition (Language Recognized by a DFA)

Let M be a deterministic finite automaton.
The language recognized by M is defined as
L(M) = {w ∈ Σ∗ | w is accepted by M}.
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Example

Example

q0q1 q2
0

1

0

1

0

1

The DFA recognizes the language
{w ∈ {0, 1}∗ | w ends with 00}.
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A Note on Terminology

In the literature, “accept” and “recognize” are sometimes
used synonymously or the other way around.
DFA recognizes a word or accepts a language.

We try to stay consistent using the previous definitions
(following the text book by Sipser).
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Questions

Questions?
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NFAs



Introduction Alphabets and Formal Languages DFAs NFAs DFAs vs. NFAs Summary

Nondeterministic Finite Automata

Why are DFAs called
deterministic automata? What are

nondeterministic automata,
then?

Picture courtesy of stockimages / FreeDigitalPhotos.net
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In what Sense is a DFA Deterministic?

A DFA has a single fixed state
from which the computation starts.

When a DFA is in a specific state and reads an input symbol,
we know what the next state will be.

For a given input, the entire computation is determined.

This is a deterministic computation.
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Nondeterministic Finite Automata: Example

q0 q1 q2 q3
ε

ε

0

0,1

0

differences to DFAs:

transition function δ can lead to
zero or more successor states for the same a ∈ Σ

ε-transitions can be taken without “consuming” a symbol
from the input

the automaton accepts a word if there is
at least one accepting sequence of states
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Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M = ⟨Q,Σ, δ, q0,F ⟩ where

Q is the finite set of states

Σ is the input alphabet

δ : Q × (Σ ∪ {ε}) → P(Q) is the transition function
(mapping to the power set of Q)

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

DFAs are (essentially) a special case of NFAs.
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Accepting Computation: Example

q0 q1 q2 q3
ε

ε

0

0,1

0 w = 0100

⇝ computation tree on blackboard
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ε-closure of a State

For a state q ∈ Q, we write E (q) to denote the set of states that
are reachable from q via ε-transitions in δ.

Definition (ε-closure)

For NFA M = ⟨Q,Σ, δ, q0,F ⟩ and state q ∈ Q, state p is in the
ε-closure E (q) of q iff there is a sequence of states q′0, . . . , q

′
n with

1 q′0 = q,

2 q′i ∈ δ(q′i−1, ε) for all i ∈ {1, . . . , n} and

3 q′n = p.

q ∈ E (q) for every state q
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Exercise (slido)

Consider the following NFA:

q0 q1 q2 q3
ε

ε

0

0,1

0, ε

Which states are in the ε-closure E (q0)?

q0

q1

q2

q3
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NFA: Accepted Words

Definition (Words Accepted by an NFA)

NFA M = ⟨Q,Σ, δ, q0,F ⟩ accepts the word w = a1 . . . an
if there is a sequence of states q′0, . . . , q

′
n ∈ Q with

1 q′0 ∈ E (q0),

2 q′i ∈
⋃

q∈δ(q′i−1,ai )
E (q) for all i ∈ {1, . . . , n} and

3 q′n ∈ F .
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Example: Accepted Words

Example

q0 q1 q2 q3
ε

ε

0

0,1

0

accepts:
0

10010100

01000

does not accept:
ε
1001010

010001
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Exercise (slido)

q0 q1 q2 q3
ε

ε

0

0,1

0

Does this NFA accept input 01010?
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NFA: Recognized Language

Definition (Language Recognized by an NFA)

Let M be an NFA with input alphabet Σ.

The language recognized by M is defined as
L(M) = {w ∈ Σ∗ | w is accepted by M}.
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Example: Recognized Language

Example

q0 q1 q2 q3
ε

ε

0

0,1

0

The NFA recognizes the language
{w ∈ {0, 1}∗ | w = 0 or w ends with 00}.
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DFAs vs. NFAs
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DFAs are No More Powerful than NFAs

Observation

Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition
δ(q, a) = q′ with δ(q, a) = {q′}.
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Question

DFAs are
no more powerful than NFAs.

But are there languages
that can be recognized

by an NFA but not by a DFA?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can
convert an NFA to an equivalent DFA. Let’s first have a look at
the idea by means of an example (on the blackboard).



Introduction Alphabets and Formal Languages DFAs NFAs DFAs vs. NFAs Summary

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
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The proof of the theorem is constructive and shows how we can
convert an NFA to an equivalent DFA. Let’s first have a look at
the idea by means of an example (on the blackboard).
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Conversion of an NFA to an Equivalent DFA: Example

q0 q1 q2 q3
ε

ε

0

0,1

0
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof.

For every NFA M = ⟨Q,Σ, δ, q0,F ⟩ we can construct
a DFA M ′ = ⟨Q ′,Σ, δ′, q′0,F

′⟩ with L(M) = L(M ′).
Here M ′ is defined as follows:

Q ′ := P(Q) (the power set of Q)

q′0 := E (q0)

F ′ := {Q ⊆ Q | Q ∩ F ̸= ∅}
For all Q ∈ Q ′: δ′(Q, a) :=

⋃
q∈Q

⋃
q′∈δ(q,a) E (q

′)

. . .
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)
iff there is a sequence of states p0, p1, . . . , pn with
iff p0 ∈ E (q0), pn ∈ F and

pi ∈
⋃

q∈δ(pi−1,ai )
E (q) for all i ∈ {1, . . . , n}

iff there is a sequence of subsets Q0,Q1, . . . ,Qn with
iff Q0 = q′0, Qn ∈ F ′ and δ′(Qi−1, ai ) = Qi for all i ∈ {1, . . . , n}
iff w ∈ L(M ′)
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NFAs are More Compact than DFAs

Example

For k ≥ 1 consider the language
Lk = {w ∈ {0, 1}∗ | |w | ≥ k and the k-th last symbol of w is 0}.
The language Lk can be accepted by an NFA with k + 1 states:

q0 q1 q2 . . . qk
0

0,1

0,1 0,1 0,1

There is no DFA with less than 2k states that accepts Lk
(without proof).

NFAs can often represent languages more compactly than DFAs.
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Questions

Questions?
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Summary
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Summary

DFAs are automata where every state transition
is uniquely determined.

NFAs can have zero, one or more transitions
for a given state and input symbol.

NFAs can have ϵ-transitions that can be taken without
reading a symbol from the input.

NFAs accept a word if there is at least one
accepting sequence of states.

DFAs and NFAs accept the same languages.
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