Theory of Computer Science B1. Finite Automata

Gabriele Röger

University of Basel

March 6/8, 2023

Introduction	Alphabets and Formal Languages	DFAs	NFAs	DFAs vs. NFAs	Summary
●000		00000000000	00000000000000	00000000	00

Introduction

Course Contents

Parts of the course:

- A. background
 - \triangleright mathematical foundations and proof techniques
- B. automata theory and formal languages (Automatentheorie und formale Sprachen)▷ What is a computation?
- C. Turing computability (Turing-Berechenbarkeit)▷ What can be computed at all?
- D. complexity theory (Komplexitätstheorie)▷ What can be computed efficiently?
- E. more computability theory (mehr Berechenbarkeitheorie)▷ Other models of computability

Course Contents

Parts of the course:

- A. background
 - \triangleright mathematical foundations and proof techniques
- B. automata theory and formal languages (Automatentheorie und formale Sprachen)
 ▷ What is a computation?
- C. Turing computability (Turing-Berechenbarkeit)▷ What can be computed at all?
- D. complexity theory (Komplexitätstheorie)▷ What can be computed efficiently?
- E. more computability theory (mehr Berechenbarkeitheorie)▷ Other models of computability

NFAs 0000000000000 DFAs vs. NFAs

Summary 00

A Controller for a Turnstile

CC BY-SA 3.0, author: Stolbovsky

- simple access control
- card reader and push sensor
- card can either be valid or invalid

0000000000

NFAs 0000000000000 DFAs vs. NFAs 00000000 Summary 00

A Controller for a Turnstile

CC BY-SA 3.0, author: Stolbovsky

- simple access control
- card reader and push sensor
- card can either be valid or invalid

Introduction	Alphabets and Formal Languages	DFAs	NFAs	DFAs vs. NFAs	Summary
000●		00000000000	000000000000000	00000000	00

- Finite automata are a good model for computers with very limited memory.
 Where can the turnstile controller store information about what it has seen in the past?
- We will not consider automata that run forever but that process a finite input sequence and then classify it as accepted or not.
- Before we get into the details, we need some background on formal languages to formalize what is a valid input sequence.

Introduction	Alphabets and Formal Languages	DFAs	NFAs	DFAs vs. NFAs	Sur
0000	●0000	00000000000	00000000000000000	00000000	00

Alphabets and Formal Languages

0FAs 00000000000

DFAs vs. NFAs

Summary 00

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

$$\Sigma = \{\texttt{a},\texttt{b}\}$$

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ . The empty word (the empty sequence of elements) is denoted by ε . Σ^* denotes the set of all words over Σ . Σ^+ (= $\Sigma^* \setminus \{\varepsilon\}$) denotes the set of all non-empty words over Σ .

$$\begin{split} \boldsymbol{\Sigma} &= \{\mathtt{a},\mathtt{b}\}\\ \boldsymbol{\Sigma}^* &= \{\varepsilon,\mathtt{a},\mathtt{b},\mathtt{a}\mathtt{a},\mathtt{a}\mathtt{b},\mathtt{b}\mathtt{b},\dots\} \end{split}$$

DFAs vs. NFAs 00000000 Summary 00

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ . The empty word (the empty sequence of elements) is denoted by ε . Σ^* denotes the set of all words over Σ . Σ^+ (= $\Sigma^* \setminus \{\varepsilon\}$) denotes the set of all non-empty words over Σ .

We write |w| for the length of a word w.

$$\begin{split} \boldsymbol{\Sigma} &= \{\mathbf{a}, \mathbf{b}\}\\ \boldsymbol{\Sigma}^* &= \{\varepsilon, \mathbf{a}, \mathbf{b}, \mathbf{a}\mathbf{a}, \mathbf{a}\mathbf{b}, \mathbf{b}\mathbf{a}, \mathbf{b}\mathbf{b}, \dots \}\\ |\mathbf{a}\mathbf{b}\mathbf{a}| &= 3, |\mathbf{b}| = 1, |\varepsilon| = 0 \end{split}$$

NFAs 00000000000000 DFAs vs. NFAs 00000000 Summary 00

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ . The empty word (the empty sequence of elements) is denoted by ε . Σ^* denotes the set of all words over Σ . Σ^+ (= $\Sigma^* \setminus \{\varepsilon\}$) denotes the set of all non-empty words over Σ .

We write |w| for the length of a word w.

A formal language (over alphabet Σ) is a subset of Σ^* .

$$\begin{split} \boldsymbol{\Sigma} &= \{\texttt{a},\texttt{b}\}\\ \boldsymbol{\Sigma}^* &= \{\varepsilon,\texttt{a},\texttt{b},\texttt{aa},\texttt{ab},\texttt{ba},\texttt{bb},\dots\}\\ |\texttt{aba}| &= 3, |\texttt{b}| = 1, |\varepsilon| = 0 \end{split}$$

NFAs 00000000000000 DFAs vs. NFAs 00000000 Summary 00

Languages: Examples

$\overline{\mathsf{Example}} \ (\mathsf{Languages} \ \mathsf{over} \ \overline{\Sigma} = \{\mathsf{a},\mathsf{b}\})$

•
$$S_1 = \{a, aa, aaa, aaaa, \dots\} = \{a\}^+$$

NFAs 00000000000000000

Languages: Examples

Example (Languages over $\Sigma = \{a, b\}$)

•
$$S_1 = \{a, aa, aaa, aaaa, \dots\} = \{a\}^+$$

 $\bullet S_2 = \Sigma^*$

Languages: Examples

Example (Languages over $\Sigma = \{a, b\}$)

•
$$S_1 = \{a, aa, aaa, aaaa, \dots\} = \{a\}^+$$

$$\bullet S_2 = \Sigma^2$$

•
$$S_3 = \{a^n b^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, \dots\}$$

Languages: Examples

Example (Languages over $\Sigma = \{a, b\}$)

•
$$S_1 = \{ \texttt{a}, \texttt{aa}, \texttt{aaa}, \texttt{aaaa}, \dots \} = \{ \texttt{a} \}^+$$

$$\bullet S_2 = \Sigma$$

•
$$S_3 = \{a^n b^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aabbb, \dots\}$$

•
$$S_4 = \{\varepsilon\}$$

Languages: Examples

Example (Languages over $\Sigma = \{a, b\}$)

•
$$S_1 = \{ \texttt{a}, \texttt{aa}, \texttt{aaa}, \texttt{aaaa}, \dots \} = \{ \texttt{a} \}^+$$

$$\bullet S_2 = \Sigma$$

•
$$S_3 = \{a^n b^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, \dots\}$$

$$\bullet S_4 = \{\varepsilon\}$$

•
$$S_5 = \emptyset$$

NFAs 0000000000000000 Summary 00

Languages: Examples

Example (Languages over $\Sigma = \{a,b\})$

•
$$S_1 = \{ \texttt{a}, \texttt{aa}, \texttt{aaa}, \texttt{aaaa}, \dots \} = \{ \texttt{a} \}^+$$

$$\bullet S_2 = \Sigma^2$$

•
$$S_3 = \{a^n b^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, \dots\}$$

$$\bullet S_4 = \{\varepsilon\}$$

$$\bullet S_5 = \emptyset$$

•
$$S_6 = \{ w \in \Sigma^* \mid w \text{ contains twice as many as as bs} \}$$

= { ε , aab, aba, baa, ... }

Languages: Examples

Example (Languages over $\Sigma = \{a,b\})$

•
$$S_1 = \{ \texttt{a}, \texttt{aa}, \texttt{aaa}, \texttt{aaaa}, \dots \} = \{ \texttt{a} \}^+$$

$$S_2 = \Sigma^2$$

•
$$S_3 = \{a^n b^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, \dots\}$$

$$\bullet S_4 = \{\varepsilon\}$$

$$S_5 = \emptyset$$

•
$$S_6 = \{ w \in \Sigma^* \mid w \text{ contains twice as many as as bs} \}$$

= $\{ \varepsilon, aab, aba, baa, \dots \}$

•
$$S_7 = \{w \in \Sigma^* \mid |w| = 3\}$$

= {aaa, aab, aba, baa, bba, bab, abb, bbb}

N 0000000 0

DFAs vs. NFAs

Summary 00

Exercise (slido)

$$\label{eq:scalar} \begin{split} & \text{Consider } \Sigma = \{\text{push}, \text{validcard}\}. \\ & \text{What is } |\text{pushvalidcard}|? \end{split}$$

Introd	

DFAs vs. NFAs

Summary 00

Questions

Questions?

Introduction Alphabets and Formal Languages	DFAs	NFAs	DFAs vs. NFAs	Summary
	●00000000000	00000000000000	00000000	00

DFAs vs. NFAs

Summary 00

Finite Automaton: Example

NFAs 0000000000000 DFAs vs. NFAs 00000000 Summary 00

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_0 ,

DFAs vs. NFAs

Summary 00

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_{0} ,

DFAs vs. NFAs 00000000 Summary 00

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_0, q_1, q_1 ,

NFAs 0000000000000 DFAs vs. NFAs 00000000 Summary 00

Finite Automaton: Example

When reading the input 01100 the automaton visits the states $q_0, q_1,$

NFAs 0000000000000 DFAs vs. NFAs 00000000 Summary 00

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_0, q_1, q_0 ,

DFAs vs. NFAs

Summary 00

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_0, q_1, q_0 ,

DFAs vs. NFAs 00000000 Summary 00

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_0, q_1, q_0, q_0 ,

NFAs 0000000000000 DFAs vs. NFAs 00000000 Summary 00

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 ,

DFAs vs. NFAs 00000000 Summary 00

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 ,

NFAs 0000000000000 DFAs vs. NFAs 00000000 Summary 00

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 ,

NFAs 0000000000000 DFAs vs. NFAs

Summary 00

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 , q_2 .

NFAs 000000000000000 DFAs vs. NFAs

Summary 00

Finite Automata: Terminology and Notation

DFAs vs. NFAs

Summary 00

Finite Automata: Terminology and Notation

• states $Q = \{q_0, q_1, q_2\}$
Finite Automata: Terminology and Notation

- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$

Summary 00

Finite Automata: Terminology and Notation

• states
$$Q = \{q_0, q_1, q_2\}$$

- input alphabet $\Sigma = \{0, 1\}$
- transition function δ

$$egin{aligned} &\delta(q_0,0)=q_1\ &\delta(q_0,1)=q_0\ &\delta(q_1,0)=q_2\ &\delta(q_1,1)=q_0\ &\delta(q_2,0)=q_2\ &\delta(q_2,1)=q_0 \end{aligned}$$

1

 q_0

 q_0

 q_0

Finite Automata: Terminology and Notation

- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- transition function δ

δ $\delta(q_0,0)=q_1$ 0 q_0 q_1 $\delta(q_0,1)=q_0$ q_1 q_2 $\delta(q_1,0)=q_2$ q_2 q_2 $\delta(q_1,1)=q_0$ table form of δ $\delta(q_2,0)=q_2$ $\delta(q_2,1)=q_0$

0

 q_1

 q_2

 q_2

1

 q_0

 q_0

 q_0

Finite Automata: Terminology and Notation

- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- transition function δ
- start state q_0

δ $\delta(q_0,0)=q_1$ q_0 $\delta(q_0,1)=q_0$ q_1 $\delta(q_1,0)=q_2$ q_2 $\delta(q_1,1)=q_0$ table form of δ $\delta(q_2,0)=q_2$ $\delta(q_2,1)=q_0$

DFAs NFAs 00●00000000 000000

00000000 000

DFAs vs. NFAs 00000000 Summary 00

Finite Automata: Terminology and Notation

- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- transition function δ
- start state q₀
- accept states {q₂}

 $egin{aligned} &\delta(q_0,0) = q_1 \ &\delta(q_0,1) = q_0 \ &\delta(q_1,0) = q_2 \ &\delta(q_1,1) = q_0 \ &\delta(q_2,0) = q_2 \ &\delta(q_2,1) = q_0 \end{aligned}$

0	1
q_1	q_0
q 2	q_0
q ₂	q_0
	0 91 92 92

table form of δ

NFAs 00000000000000000 DFAs vs. NFAs 00000000 Summary 00

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple $M_{\rm eff}$ (OFA) is a 5-tuple

- $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where
 - Q is the finite set of states
 - Σ is the input alphabet
 - $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of accept states (or final states)

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in an accept state.

Summa 00

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in an accept state.

Definition (Words Accepted by a DFA)

DFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ accepts the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

•
$$q'_0 = q_0$$
,
• $\delta(q'_{i-1}, a_i) = q'_i$ for all $i \in \{1, ..., n\}$ and
• $q'_n \in F$.

Introduction	Alphabets and Formal Languages	DFAs	NFAs	DFAs vs. N
0000		00000000000	000000000000000	00000000

Example

Example			
	accepts: 00 10010100 01000	does not accept: ε 1001010 010001	

Exercise (slido)

Consider the following DFA:

Which of the following words does it accept?

- abc
- ababcb
- babbc

DFAs 000000000000

DFAs vs. NFAs

Summary 00

DFA: Recognized Language

Definition (Language Recognized by a DFA)

Let *M* be a deterministic finite automaton. The language recognized by *M* is defined as $\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}.$

Introduction	Alphabets and Formal Languages	DFAs	NFAs	DFAs vs. NFAs	Summ
0000		00000000●00	000000000000000	00000000	00

Example

Example

Introduction	Alphabets and Formal Languages	DFAs	NFAs	DFAs vs. NF/
0000		000000000000000	000000000000000	00000000

Example

Example

The DFA recognizes the language $\{w \in \{0, 1\}^* \mid w \text{ ends with } 00\}.$

DFAs

A Note on Terminology

- In the literature, "accept" and "recognize" are sometimes used synonymously or the other way around. DFA recognizes a word or accepts a language.
- We try to stay consistent using the previous definitions (following the text book by Sipser).

Introduction 0000 DFAs 0000000000

DFAs vs. NFAs

Summary 00

Questions

Questions?

Introduction Alphabets and Formal Languages	DFAs	NFAs	DFAs vs. NFAs	Summary
	00000000000	●0000000000000	00000000	00

NFAs

DFAs vs. NFAs 00000000 Summary 00

Nondeterministic Finite Automata

Picture courtesy of stockimages / FreeDigitalPhotos.net

In what Sense is a DFA Deterministic?

- A DFA has a single fixed state from which the computation starts.
- When a DFA is in a specific state and reads an input symbol, we know what the next state will be.
- For a given input, the entire computation is determined.
- This is a deterministic computation.

differences to DFAs:

differences to DFAs:

• transition function δ can lead to zero or more successor states for the same $a \in \Sigma$

differences to DFAs:

- transition function δ can lead to zero or more successor states for the same $a \in \Sigma$
- ε-transitions can be taken without "consuming" a symbol from the input

differences to DFAs:

- transition function δ can lead to
 zero or more successor states for the same a ∈ Σ
- ε-transitions can be taken without "consuming" a symbol from the input
- the automaton accepts a word if there is at least one accepting sequence of states

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple

 $\textit{M} = \langle \textit{Q}, \Sigma, \delta, \textit{q}_0, \textit{F}
angle$ where

- Q is the finite set of states
- Σ is the input alphabet
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$ is the transition function (mapping to the power set of Q)
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple

 $\textit{M} = \langle \textit{Q}, \Sigma, \delta, \textit{q}_0, \textit{F}
angle$ where

- Q is the finite set of states
- Σ is the input alphabet
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$ is the transition function (mapping to the power set of Q)
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

DFAs are (essentially) a special case of NFAs.

Accepting Computation: Example

 \rightsquigarrow computation tree on blackboard

DFAs vs. NFAs 00000000

Summary 00

Accepting Computation: Example

ε -closure of a State

For a state $q \in Q$, we write E(q) to denote the set of states that are reachable from q via ε -transitions in δ .

$\varepsilon\text{-closure}$ of a State

For a state $q \in Q$, we write E(q) to denote the set of states that are reachable from q via ε -transitions in δ .

Definition (ε -closure)

For NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ and state $q \in Q$, state p is in the ε -closure E(q) of q iff there is a sequence of states q'_0, \ldots, q'_n with • $q'_0 = q$, • $q'_i \in \delta(q'_{i-1}, \varepsilon)$ for all $i \in \{1, \ldots, n\}$ and • $q'_n = p$.

$\varepsilon\text{-closure}$ of a State

For a state $q \in Q$, we write E(q) to denote the set of states that are reachable from q via ε -transitions in δ .

Definition (ε -closure)

For NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ and state $q \in Q$, state p is in the ε -closure E(q) of q iff there is a sequence of states q'_0, \ldots, q'_n with • $q'_0 = q$, • $q'_i \in \delta(q'_{i-1}, \varepsilon)$ for all $i \in \{1, \ldots, n\}$ and • $q'_n = p$.

 $q \in E(q)$ for every state q

Exercise (slido)

Consider the following NFA:

Which states are in the ε -closure $E(q_0)$?

- **q**₀
- **q**1
- **q**₂
- **q**3

NFA: Accepted Words

Definition (Words Accepted by an NFA)

NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ accepts the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

- **1** $q_0' \in E(q_0)$,
- **2** $q'_i \in \bigcup_{q \in \delta(q'_{i-1}, a_i)} E(q)$ for all $i \in \{1, \dots, n\}$ and
- $\ \mathbf{g}_n' \in F.$

DFAs 0000000000 NFAs 0000000000000000 DFAs vs. NFAs 00000000 Summary 00

Example: Accepted Words

Example

accepts: 0 10010100 01000 does not accept: ε 1001010

010001

Introduction	Alphabets and Formal Languages	DFAs	NFAs	DFAs vs. NFAs	Summary
0000		00000000000	००००००००००●००	00000000	00

Exercise (slido)

Introduction 0000 DFAs 00000000000 NFAs 000000000000000 DFAs vs. NFAs 00000000 Summary 00

NFA: Recognized Language

Definition (Language Recognized by an NFA)

Let M be an NFA with input alphabet Σ .

The language recognized by M is defined as $\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}.$

F**As** 20000000000 NFAs 0000000000000 DFAs vs. NFAs 00000000 Summary 00

Example: Recognized Language

Example

NFAs

NFAs 00000000000000 DFAs vs. NFAs 00000000 Summary 00

Example: Recognized Language

Example

The NFA recognizes the language $\{w \in \{0,1\}^* \mid w = 0 \text{ or } w \text{ ends with } 00\}.$
Introduction	Alphabets and Formal Languages	DFAs	NFAs	DFAs vs. NFAs	Summary
0000		00000000000	000000000000000	●0000000	00

Summary 00

DFAs are No More Powerful than NFAs

Observation

Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition $\delta(q, a) = q'$ with $\delta(q, a) = \{q'\}$.

Question

DFAs are no more powerful than NFAs. But are there languages that can be recognized by an NFA but not by a DFA?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

DFAs D00000000000

DFAs vs. NFAs

Summary 00

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

DFAs 00000000000 NFAs 00000000000000000 DFAs vs. NFAs

Summary 00

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can convert an NFA to an equivalent DFA. Let's first have a look at the idea by means of an example (on the blackboard).

Conversion of an NFA to an Equivalent DFA: Example

. . .

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof.

For every NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ we can construct a DFA $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ with $\mathcal{L}(M) = \mathcal{L}(M')$. Here M' is defined as follows:

- $Q' := \mathcal{P}(Q)$ (the power set of Q)
- $\bullet q_0' := E(q_0)$
- $F' := \{ \mathcal{Q} \subseteq Q \mid \mathcal{Q} \cap F \neq \emptyset \}$
- For all $\mathcal{Q} \in \mathcal{Q}'$: $\delta'(\mathcal{Q}, a) := \bigcup_{q \in \mathcal{Q}} \bigcup_{q' \in \delta(q, a)} E(q')$

NFAs 00000000000000000 DFAs vs. NFAs 00000●00 Summary 00

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

For every $w = a_1 a_2 \dots a_n \in \Sigma^*$: $w \in \mathcal{L}(M)$ iff there is a sequence of states p_0, p_1, \dots, p_n with $p_0 \in E(q_0), p_n \in F$ and $p_i \in \bigcup_{q \in \delta(p_{i-1}, a_i)} E(q)$ for all $i \in \{1, \dots, n\}$ iff there is a sequence of subsets $\mathcal{Q}_0, \mathcal{Q}_1, \dots, \mathcal{Q}_n$ with $\mathcal{Q}_0 = q'_0, \mathcal{Q}_n \in F'$ and $\delta'(\mathcal{Q}_{i-1}, a_i) = \mathcal{Q}_i$ for all $i \in \{1, \dots, n\}$ iff $w \in \mathcal{L}(M')$

Summary 00

NFAs are More Compact than DFAs

Example

For $k \ge 1$ consider the language $L_k = \{w \in \{0, 1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is } 0\}.$

Summary 00

NFAs are More Compact than DFAs

Example

For $k \ge 1$ consider the language $L_k = \{w \in \{0, 1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is } 0\}.$ The language L_k can be accepted by an NFA with k + 1 states:

Summary 00

NFAs are More Compact than DFAs

Example

For $k \ge 1$ consider the language $L_k = \{w \in \{0, 1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is } 0\}.$

The language L_k can be accepted by an NFA with k + 1 states:

There is no DFA with less than 2^k states that accepts L_k (without proof).

Summary 00

NFAs are More Compact than DFAs

Example

For $k \ge 1$ consider the language $L_k = \{w \in \{0,1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is } 0\}.$

The language L_k can be accepted by an NFA with k + 1 states:

There is no DFA with less than 2^k states that accepts L_k (without proof).

NFAs can often represent languages more compactly than DFAs.

Introduction 0000 phabets and Formal Languages

DFAs 0000000000

DFAs vs. NFAs

Summary 00

Questions

Questions?

Introduction	Alphabets and Formal Languages	DFAs	NFAs	DFAs vs. NFAs	Summary
0000		00000000000	000000000000000	00000000	●0

Summary

Summary

- DFAs are automata where every state transition is uniquely determined.
- NFAs can have zero, one or more transitions for a given state and input symbol.
- NFAs can have *e*-transitions that can be taken without reading a symbol from the input.
- NFAs accept a word if there is at least one accepting sequence of states.
- DFAs and NFAs accept the same languages.