Theory of Computer Science B1. Finite Automata

Gabriele Röger

University of Basel

March 6/8, 2023

Gabriele Röger (University of Basel)

Gabriele Röger (University of Basel)

B1. Finite Automata

Theory of Computer Science

March 6/8, 2023

B1. Finite Automata

Theory of Computer Science

March 6/8, 2023 2 / 44

Introduction

B1.1 Introduction

Theory of Computer Science

March 6/8, 2023 — B1. Finite Automata

B1.1 Introduction

B1.2 Alphabets and Formal Languages

B1.3 DFAs

B1.4 NFAs

B15 DFAs vs NFAs

B1.6 Summary

Gabriele Röger (University of Basel)

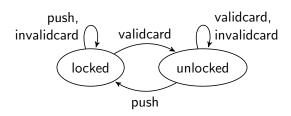
Course Contents

Parts of the course:

A. background

Gabriele Röger (University of Basel)

- ▶ mathematical foundations and proof techniques
- B. automata theory and formal languages (Automatentheorie und formale Sprachen)
 - ▶ What is a computation?
- C. Turing computability (Turing-Berechenbarkeit)
 - b What can be computed at all?
- D. complexity theory (Komplexitätstheorie)
 - ▶ What can be computed efficiently?
- E. more computability theory (mehr Berechenbarkeitheorie)
 - Other models of computability


Theory of Computer Science March 6/8, 2023 Theory of Computer Science

A Controller for a Turnstile

CC BY-SA 3.0, author: Stolbovsky

- simple access control
- card reader and push sensor
- card can either be valid or invalid

Gabriele Röger (University of Basel)

Theory of Computer Science

March 6/8, 2023

5 / 44

B1. Finite Automata Introduct

► Finite automata are a good model for computers with very limited memory.

Where can the turnstile controller store information about what it has seen in the past?

- ► We will not consider automata that run forever but that process a finite input sequence and then classify it as accepted or not.
- ▶ Before we get into the details, we need some background on formal languages to formalize what is a valid input sequence.

Gabriele Röger (University of Basel)

Theory of Computer Science

March 6/8, 2023

C / 44

B1. Finite Automata Alphabets and Formal Languages

B1.2 Alphabets and Formal Languages

B1. Finite Automata

Alphabets and Formal Languages

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ .

The empty word (the empty sequence of elements) is denoted by arepsilon.

 Σ^* denotes the set of all words over Σ .

 Σ^+ (= $\Sigma^* \setminus \{\varepsilon\}$) denotes the set of all non-empty words over Σ .

We write |w| for the length of a word w.

A formal language (over alphabet Σ) is a subset of Σ^* .

Example
$$\begin{split} \Sigma &= \{\mathtt{a},\mathtt{b}\} \\ \Sigma^* &= \{\varepsilon,\mathtt{a},\mathtt{b},\mathtt{aa},\mathtt{ab},\mathtt{ba},\mathtt{bb},\dots\} \\ |\mathtt{aba}| &= 3,|\mathtt{b}| = 1,|\varepsilon| = 0 \end{split}$$

Gabriele Röger (University of Basel)

Theory of Computer Science

Alphabets and Formal Languages

Languages: Examples

Example (Languages over $\Sigma = \{a, b\}$)

- ► $S_1 = \{a, aa, aaa, aaaa, ...\} = \{a\}^+$
- \triangleright $S_2 = \Sigma^*$
- ► $S_3 = \{a^n b^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabb, ...\}$
- \triangleright $S_4 = \{\varepsilon\}$
- \triangleright $S_5 = \emptyset$
- ▶ $S_6 = \{ w \in \Sigma^* \mid w \text{ contains twice as many as as bs} \}$ $= \{ \varepsilon, \mathtt{aab}, \mathtt{aba}, \mathtt{baa}, \dots \}$
- ► $S_7 = \{ w \in \Sigma^* \mid |w| = 3 \}$ = {aaa, aab, aba, baa, bba, bab, abb, bbb}

Gabriele Röger (University of Basel)

Theory of Computer Science

March 6/8, 2023

B1. Finite Automata

Alphabets and Formal Languages

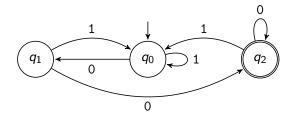
Exercise (slido)

Consider $\Sigma = \{\text{push}, \text{validcard}\}.$

What is |pushvalidcard|?

Gabriele Röger (University of Basel)

Theory of Computer Science

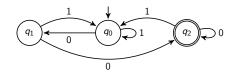

March 6/8, 2023

B1. Finite Automata

B1.3 DFAs

B1. Finite Automata

Finite Automaton: Example



When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 , q_2 .

Gabriele Röger (University of Basel)

Theory of Computer Science

Finite Automata: Terminology and Notation

- ▶ states $Q = \{q_0, q_1, q_2\}$
- $\delta(q_0,0)=q_1$
- ▶ input alphabet $\Sigma = \{0,1\}$ $\delta(q_0,1) = q_0$
- ightharpoonup transition function δ
- \triangleright start state q_0

Gabriele Röger (University of Basel)

ightharpoonup accept states $\{q_2\}$

- $\delta(q_1,0)=q_2$

 q_1 q_0

table form of δ

$$\delta(q_2,0) = q_2$$
$$\delta(q_2,1) = q_0$$

 $\delta(q_1,1)=q_0$

Theory of Computer Science

March 6/8, 2023

B1. Finite Automata

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple

 $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

- Q is the finite set of states
- \triangleright Σ is the input alphabet
- $lackbox{} \delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $ightharpoonup q_0 \in Q$ is the start state
- $ightharpoonup F \subset Q$ is the set of accept states (or final states)

Gabriele Röger (University of Basel)

Theory of Computer Science

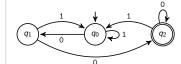
March 6/8, 2023

B1. Finite Automata

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in an accept state.

Definition (Words Accepted by a DFA)


DFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ accepts the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \ldots, q'_n \in Q$ with

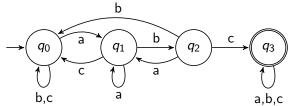
- $q_0' = q_0,$
- $\delta(q'_{i-1}, a_i) = q'_i$ for all $i \in \{1, \dots, n\}$ and
- $g_n' \in F.$

B1. Finite Automata

Example

Example

accepts:


10010100 01000

does not accept:

1001010 010001

Exercise (slido)

Consider the following DFA:

Which of the following words does it accept?

- ► abc
- ababcb
- babbc

Gabriele Röger (University of Basel)

Theory of Computer Science

March 6/8, 2023

B1. Finite Automata

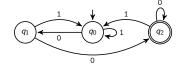
DFA: Recognized Language

Definition (Language Recognized by a DFA)

Let M be a deterministic finite automaton. The language recognized by M is defined as $\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}.$

Gabriele Röger (University of Basel)

Theory of Computer Science


March 6/8, 2023

18 / 44

B1. Finite Automata

Example

Example

The DFA recognizes the language $\{w \in \{0,1\}^* \mid w \text{ ends with } 00\}.$

B1. Finite Automata

A Note on Terminology

- ▶ In the literature, "accept" and "recognize" are sometimes used synonymously or the other way around.
 - DFA recognizes a word or accepts a language.
- ▶ We try to stay consistent using the previous definitions (following the text book by Sipser).

March 6/8, 2023 Gabriele Röger (University of Basel) Theory of Computer Science

Gabriele Röger (University of Basel)

Theory of Computer Science

B1.4 NFAs

Gabriele Röger (University of Basel)

Theory of Computer Science

March 6/8, 2023

B1. Finite Automata

In what Sense is a DFA Deterministic?

- ► A DFA has a single fixed state from which the computation starts.
- ▶ When a DFA is in a specific state and reads an input symbol, we know what the next state will be.
- ▶ For a given input, the entire computation is determined.
- ► This is a deterministic computation.

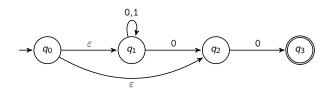
B1. Finite Automata NFAs

Nondeterministic Finite Automata

Why are DFAs called deterministic automata? What are nondeterministic automata, then?

Picture courtesy of stockimages / FreeDigitalPhotos.net

Gabriele Röger (University of Basel)


B1. Finite Automata

Theory of Computer Science

March 6/8, 2023

22 / 44

Nondeterministic Finite Automata: Example

differences to DFAs:

- ► transition function δ can lead to zero or more successor states for the same a ∈ Σ
- ightharpoonup ε -transitions can be taken without "consuming" a symbol from the input
- ► the automaton accepts a word if there is at least one accepting sequence of states

Gabriele Röger (University of Basel)

Theory of Computer Science

March 6/8, 2023

24 / 44

Gabriele Röger (University of Basel)

Theory of Computer Science

March 6/8, 2023

23 / 4

Nondeterministic Finite Automaton: Definition

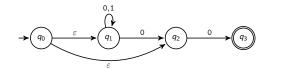
Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple

 $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

- Q is the finite set of states
- \triangleright Σ is the input alphabet
- ▶ $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$ is the transition function (mapping to the power set of Q)
- ▶ $q_0 \in Q$ is the start state
- $ightharpoonup F \subset Q$ is the set of accept states

DFAs are (essentially) a special case of NFAs.


Gabriele Röger (University of Basel)

Theory of Computer Science

March 6/8, 2023

B1. Finite Automata

Accepting Computation: Example

w = 0100

Gabriele Röger (University of Basel)

Theory of Computer Science

March 6/8, 2023

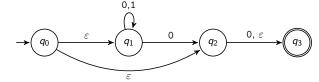
B1. Finite Automata

ε -closure of a State

For a state $q \in Q$, we write E(q) to denote the set of states that are reachable from q via ε -transitions in δ .

Definition (ε -closure)

For NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ and state $q \in Q$, state p is in the ε -closure E(q) of q iff there is a sequence of states q'_0, \ldots, q'_n with


- $g_0' = g$
- $q_i' \in \delta(q_{i-1}', \varepsilon)$ for all $i \in \{1, \ldots, n\}$ and

 $q \in E(q)$ for every state q

B1. Finite Automata

Exercise (slido)

Consider the following NFA:

Which states are in the ε -closure $E(q_0)$?

- q_0

- ▶ q₃

Gabriele Röger (University of Basel)

Theory of Computer Science

NFA: Accepted Words

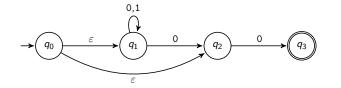
Definition (Words Accepted by an NFA)

NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ accepts the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

- $q_0' \in E(q_0),$
- ② $q_i' \in \bigcup_{q \in \delta(q_{i-1}', a_i)} E(q)$ for all $i \in \{1, \dots, n\}$ and
- $q'_n \in F.$

Gabriele Röger (University of Basel)

Theory of Computer Science


March 6/8, 2023

...

B1. Finite Automata NFAs

Exercise (slido)

Does this NFA accept input 01010?

B1. Finite Automata NFA

Theory of Computer Science

March 6/8, 2023

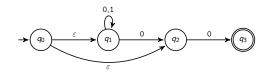
30 / 44

NFA: Recognized Language

Gabriele Röger (University of Basel)

Definition (Language Recognized by an NFA)

Let M be an NFA with input alphabet Σ .


The language recognized by M is defined as $\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}.$

Gabriele Röger (University of Basel) Theory of Computer Science March 6/8, 2023

NFΔe

Example: Recognized Language

Example

The NFA recognizes the language $\{w \in \{0,1\}^* \mid w = 0 \text{ or } w \text{ ends with } 00\}.$

Gabriele Röger (University of Basel)

Theory of Computer Science

March 6/8, 2023

B1. Finite Automata

DFAs vs. NFAs

B1.5 DFAs vs. NFAs

Gabriele Röger (University of Basel)

Theory of Computer Science

March 6/8, 2023

B1. Finite Automata

DFAs vs. NFAs

DFAs are No More Powerful than NFAs

Observation

Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition $\delta(q, a) = q'$ with $\delta(q, a) = \{q'\}$.

B1. Finite Automata

DFAs vs. NFAs

Question

DFAs are
no more powerful than NFAs.
But are there languages
that can be recognized
by an NFA but not by a DFA?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Gabriele Röger (University of Basel)

Theory of Computer Science

ΠΕΔε νε ΝΕΔε

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can convert an NFA to an equivalent DFA. Let's first have a look at the idea by means of an example (on the blackboard).

Gabriele Röger (University of Basel)

Theory of Computer Science

March 6/8, 2023

37 / 44

B1. Finite Automata

NFAs are No More Powerful than DFAs

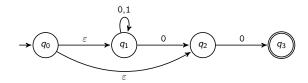
Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can convert an NFA to an equivalent DFA. Let's first have a look at the idea by means of an example (on the blackboard).

Gabriele Röger (University of Basel)

Theory of Computer Science


March 6/8, 2023

8 / 44

B1. Finite Automata

55.

Conversion of an NFA to an Equivalent DFA: Example

B1. Finite Automata

DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof.

For every NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ we can construct a DFA $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ with $\mathcal{L}(M) = \mathcal{L}(M')$.

Here M' is defined as follows:

- $ightharpoonup Q' := \mathcal{P}(Q)$ (the power set of Q)
- $ightharpoonup q'_0 := E(q_0)$

Gabriele Röger (University of Basel)

- ▶ For all $Q \in Q'$: $\delta'(Q, a) := \bigcup_{q \in Q} \bigcup_{q' \in \delta(q, a)} E(q')$

Theory of Computer Science

March 6/8, 2023

40 /

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

```
For every w = a_1 a_2 \dots a_n \in \Sigma^*:
w \in \mathcal{L}(M)
iff there is a sequence of states p_0, p_1, \ldots, p_n with
    p_0 \in E(q_0), p_n \in F and
p_i \in \bigcup_{q \in \delta(p_{i-1}, a_i)} E(q) for all i \in \{1, \dots, n\} iff there is a sequence of subsets Q_0, Q_1, \dots, Q_n with
     Q_0 = q'_0, Q_n \in F' and \delta'(Q_{i-1}, a_i) = Q_i for all i \in \{1, \ldots, n\}
iff w \in \mathcal{L}(M')
```

Gabriele Röger (University of Basel)

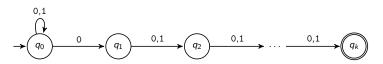
B1. Finite Automata

Theory of Computer Science

March 6/8, 2023

B1.6 Summary

B1. Finite Automata


NFAs are More Compact than DFAs

Example

For $k \ge 1$ consider the language

 $L_k = \{ w \in \{0,1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is } 0 \}.$

The language L_k can be accepted by an NFA with k+1 states:

There is no DFA with less than 2^k states that accepts L_k (without proof).

NFAs can often represent languages more compactly than DFAs.

Gabriele Röger (University of Basel)

Theory of Computer Science

March 6/8, 2023

42 / 44

B1. Finite Automata

Summary

- ▶ DFAs are automata where every state transition is uniquely determined.
- ▶ NFAs can have zero, one or more transitions for a given state and input symbol.
- \triangleright NFAs can have ϵ -transitions that can be taken without reading a symbol from the input.
- ▶ NFAs accept a word if there is at least one accepting sequence of states.
- ▶ DFAs and NFAs accept the same languages.

Gabriele Röger (University of Basel)

Theory of Computer Science