Theory of Computer Science A3. Proof Techniques

Gabriele Röger

University of Basel

February 22, 2023

Introduction •0000000000	Direct Proof 0000	Indirect Proof 0000	Contrapositive 000	Mathematical Induction	Summary 00

Introduction

Introduction	Direct Proof	Indirect Proof	Contrapositive	Mathematical Induction	Summary
0000000000	0000	0000	000		00

What is a Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conlusion that some statement must be true.

Introduction	Direct Proof	Indirect Proof	Contrapositive	Mathematical Induction	Summary
0000000000	0000	0000	000		00

What is a Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conlusion that some statement must be true.

What is a statement?

Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions and a set of conclusions.

The statement is true if the conclusions are true whenever the preconditions are true.

Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions and a set of conclusions.

The statement is **true** if the conclusions are true whenever the preconditions are true.

Notes:

- set of preconditions is sometimes empty
- often, "assumptions" is used instead of "preconditions"; slightly unfortunate because "assumption" is also used with another meaning (~> cf. indirect proofs)

Examples of Mathematical Statements

Examples (some true, some false):

- "Let $p \in \mathbb{N}_0$ be a prime number. Then p is odd."
- "There exists an even prime number."
- "Let $p \in \mathbb{N}_0$ with $p \ge 3$ be a prime number. Then p is odd."
- "All prime numbers *p* ≥ 3 are odd."
- "For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ "

What are the preconditions, what are the conclusions?

Introduction 0000000000

On what Statements can we Build the Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conlusion that some statement must be true.

We can use:

- axioms: statements that are assumed to always be true in the current context
- theorems and lemmas: statements that were already proven
 - Iemma: an intermediate tool
 - theorem: itself a relevant result
- premises: assumptions we make to see what consequences they have

What is a Logical Step?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conlusion that some statement must be true.

Each step directly follows

- from the axioms,
- premises,
- previously proven statements and
- the preconditions of the statement we want to prove.

What is a Logical Step?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conlusion that some statement must be true.

Each step directly follows

- from the axioms,
- premises,
- previously proven statements and
- the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.

Introduction 00000000000000 Direct Proof

Indirect Pro

Contrapositive

Mathematical Inductio

Summary 00

The Role of Definitions

Definition

A set is an unordered collection of distinct objects. The set that does not contain any objects is the *empty set* \emptyset . Introduction 0000000000000 Direct Proof

Indirect Proc

Contrapositive 000 Mathematical Induction

Summary 00

The Role of Definitions

Definition

A set is an unordered collection of distinct objects. The set that does not contain any objects is the *empty set* \emptyset .

- A definition introduces an abbreviation.
- Whenever we say "set", we could instead say "an unordered collection of distinct objects" and vice versa.
- Definitions can also introduce notation.

Introduction	Direct Proof	Indirect Proof	Contrapositive	Mathematical Induction	Summary
000000000000	0000	0000	000		00
Disproof	S				

- A disproof (refutation) shows that a given mathematical statement is false by giving an example where the preconditions are true, but the conclusion is false.
- This requires deriving, in a sequence of proof steps, the opposite (negation) of the conclusion.
- Formally, disproofs are proofs of modified ("negated") statements.
- Be careful about how to negate a statement!

Introduction	Direct Proof	Indirect Proof	Contrapositive	Mathematical Induction	Summary
0000000000000	0000	0000	000		00
	and a start of the				

Proof Strategies

typical proof/disproof strategies:

- "All $x \in S$ with the property *P* also have the property *Q*." "For all $x \in S$, if *x* has property *P* then *x* has property *Q*."
 - "For all $x \in S$: if x has property P, then x has property Q."
 - To prove, assume you are given an arbitrary $x \in S$ that has the property *P*.

Give a sequence of proof steps showing that x must have the property Q.

■ To disprove, find a counterexample, i. e., find an *x* ∈ *S* that has property *P* but not *Q* and prove this.

Introduction	Direct Proof	Indirect Proof	Contrapositive	Mathematical Induction	Summary
000000000000	0000	0000	000		00

Proof Strategies

typical proof/disproof strategies:

- "A is a subset of B."
 - To prove, assume you have an arbitrary element *x* ∈ *A* and prove that *x* ∈ *B*.
 - To disprove, find an element in $x \in A \setminus B$ and prove that $x \in A \setminus B$.

Introduction	Direct Proof	Indirect Proof	Contrapositive	Mathematical Induction	Summary
000000000000	0000	0000	000		00
Proof St	rategies				

typical proof/disproof strategies:

- Generating and the second seco
 - To prove, separately prove "if P then Q" and "if Q then P".
 - To disprove, disprove "if P then Q" or disprove "if Q then P".

Introduction	Direct Proof	Indirect Proof	Contrapositive	Mathematical Induction	Summary
000000000000	0000	0000	000		00
Due of Ct					

Proof Strategies

typical proof/disproof strategies:

- "A = B", where A and B are sets.
 - To prove, separately prove " $A \subseteq B$ " and " $B \subseteq A$ ".
 - To disprove, disprove " $A \subseteq B$ " or disprove " $B \subseteq A$ ".

Introduction	Direct Proof	Indirect Proof	Contrapositive	Mathematical Induction	Summary
00000000000	0000	0000	000		00

Proof Techniques

most common proof techniques:

- direct proof
- indirect proof (proof by contradiction)
- proof by contrapositive
- mathematical induction

Introduction 000000000 Direct Proof

Indirect Pro

Contrapositive

Mathematical Inductio

Summar 00

Exercise

You want to disprove the following statement with a counterexample:

If the sun is shining then all kids eat ice cream.

What properties must your counterexample have?

Introduction 00000000000	Direct Proof ●000	Indirect Proof 0000	Contrapositive 000	Mathematical Induction	Summary 00

Direct Proof

Introduction	Direct Proof	Indirect Proof	Contrapositive	Mathematical Induction	Summary
00000000000	0●00	0000	000		00
Direct P	roof				

Direct Proof

Direct derivation of the statement by deducing or rewriting.

Contrapositive

Mathematical Inductio

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Indirect Proo

Contrapositive

Mathematical Inductio 0000 Summary 00

. . .

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C) (\subseteq part)$:

Indirect Proo

Contrapositive

Mathematical Inductio 0000 Summary 00

. . .

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C) (\subseteq part)$:

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

. . .

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C)$ (\subseteq part):

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Contrapositive

. . .

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C)$ (\subseteq part):

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with $x \in A$, that $x \in A \cap C$.

. . .

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C)$ (\subseteq part):

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with $x \in A$, that $x \in A \cap C$.

In both cases $x \in A \cap B$ or $x \in A \cap C$, and we conclude $x \in (A \cap B) \cup (A \cap C)$. Indirect Proo

Contrapositive

Mathematical Inductio 0000 Summary 00

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

⊇ part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

⊇ part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

⊇ part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in (A \cap B) \cup (A \cap C)$. This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in B \cup C$ and thus $x \in A \cap (B \cup C)$.

. . .

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

⊇ part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in (A \cap B) \cup (A \cap C)$. This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in B \cup C$ and thus $x \in A \cap (B \cup C)$.

In both cases we conclude $x \in A \cap (B \cup C)$.

. . .

Contrapositive

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

We have shown that every element of $A \cap (B \cup C)$ is an element of $(A \cap B) \cup (A \cap C)$ and vice versa. Thus, both sets are equal. Contrapositive

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

Alternative:

$$A \cap (B \cup C) = \{x \mid x \in A \text{ and } x \in B \cup C\}$$

= $\{x \mid x \in A \text{ and } (x \in B \text{ or } x \in C)\}$
= $\{x \mid (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)\}$
= $\{x \mid x \in A \cap B \text{ or } x \in A \cap C\}$
= $(A \cap B) \cup (A \cap C)$

Introduction 00000000000 Direct Proof

Indirect Pro

Contrapositive

Mathematical Inductio

Summary 00

Questions

Questions?

Introduction	Direct Proof	Indirect Proof	Contrapositive	Mathematical Induction	Summary
00000000000	0000	●000	000		00

Indirect Proof

Indirect Proof

Indirect Proof (Proof by Contradiction)

- Make an assumption that the statement is false.
- Derive a contradiction from the assumption together with the preconditions of the statement.
- This shows that the assumption must be false given the preconditions of the statement, and hence the original statement must be true.

Introduction 00000000000	Direct Proof 0000	Indirect Proof	Contrapositive 000	Mathematical Induction	Summary 00

Theorem

There are infinitely many prime numbers.

		Direct Proof 0000	Indirect Proof 00●0	Contrapositive 000	Mathem 0000
--	--	----------------------	------------------------	-----------------------	----------------

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers. Let $P = \{p_1, \dots, p_n\}$ be the set of all prime numbers. Define $m = p_1 \cdot \dots \cdot p_n + 1$.

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let $P = \{p_1, \ldots, p_n\}$ be the set of all prime numbers.

Define $m = p_1 \cdot \ldots \cdot p_n + 1$.

Since $m \ge 2$, it must have a prime factor.

Let p be such a prime factor.

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let $P = \{p_1, \ldots, p_n\}$ be the set of all prime numbers.

Define $m = p_1 \cdot \ldots \cdot p_n + 1$.

Since $m \ge 2$, it must have a prime factor.

Let p be such a prime factor.

Since p is a prime number, p has to be in P.

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let $P = \{p_1, \ldots, p_n\}$ be the set of all prime numbers.

Define $m = p_1 \cdot \ldots \cdot p_n + 1$.

Since $m \ge 2$, it must have a prime factor.

Let p be such a prime factor.

Since p is a prime number, p has to be in P.

The number m is not divisible without remainder by any of the numbers in P. Hence p is no factor of m.

→ Contradiction

Direct Proof

Indirect Proof

Contrapositive

Mathematical Induction

Summary 00

Questions

Questions?

Introduction 00000000000	Direct Proof 0000	Indirect Proof 0000	Contrapositive ●00	Mathematical Induction	Summary 00

Contrapositive

Introduction 00000000		Direct Proof 0000	Indirect Proof 0000	Contrapositive ○●○	Mathematical Induction	Summary 00
-	<u> </u>	~				

Proof by Contrapositive

Proof by Contrapositive

Prove "If A, then B" by proving "If not B, then not A."

Introduction	Direct Proof	Indirect Proof	Contrapositive	Mathematical Induction	Summary
0000000000	0000	0000	○●○		00
	6				

Proof by Contrapositive

Proof by Contrapositive

Prove "If A, then B" by proving "If not B, then not A."

Examples:

- Prove "For all n ∈ N₀: if n² is odd, then n is odd" by proving "For all n ∈ N₀, if n is even, then n² is even."
- Prove "For all $n \in \mathbb{N}_0$: if *n* is not a square number, then \sqrt{n} is irrational" by proving "For all $n \in \mathbb{N}_0$: if \sqrt{n} is rational, then *n* is a square number."

Direct Proof

Indirect Pro

Contrapositive

Mathematical Inductio 0000 Summary 00

Exercise

How would you prove the following statement by contrapositive:

If the sun is shining then all kids eat ice cream.

Introduction	Direct Proof	Indirect Proof	Contrapositive	Mathematical Induction	Summary
00000000000	0000	0000	000	●000	00

Mathematical Induction

Indirect Proo

Contrapositive 000 Mathematical Induction $0 \bullet 00$

Mathematical Induction

Mathematical Induction

Proof of a statement for all natural numbers n with $n \ge m$

- **basis**: proof of the statement for n = m
- induction hypothesis (IH):

suppose that the statement is true for all k with $m \le k \le n$

inductive step: proof of the statement for n + 1 using the induction hypothesis

Mathematical Induction: Example

Theorem

For all $n \in \mathbb{N}_0$ with $n \ge 1$: $\sum_{k=1}^n (2k-1) = n^2$

Indirect Proof

Contrapositive

Mathematical Induction: Example

Theore<u>m</u>

For all
$$n \in \mathbb{N}_0$$
 with $n \ge 1$: $\sum_{k=1}^n (2k-1) = n^2$

Proof.

Mathematical induction over *n*:

basis
$$n = 1$$
: $\sum_{k=1}^{1} (2k - 1) = 2 - 1 = 1 = 1^2$

Indirect Proof

Contrapositive

 $\begin{array}{c} \text{Mathematical Induction} \\ \circ \circ \bullet \circ \end{array}$

Mathematical Induction: Example

Theore<u>m</u>

For all
$$n \in \mathbb{N}_0$$
 with $n \ge 1$: $\sum_{k=1}^n (2k-1) = n^2$

Proof.

Mathematical induction over *n*:

basis
$$n = 1$$
: $\sum_{k=1}^{1} (2k - 1) = 2 - 1 = 1 = 1^2$
IH: $\sum_{k=1}^{m} (2k - 1) = m^2$ for all $1 \le m \le n$

Mathematical Induction: Example

Theore<u>m</u>

For all
$$n \in \mathbb{N}_0$$
 with $n \ge 1$: $\sum_{k=1}^n (2k-1) = n^2$

Proof.

Mathematical induction over *n*:

basis
$$n = 1$$
: $\sum_{k=1}^{1} (2k - 1) = 2 - 1 = 1 = 1^2$
IH: $\sum_{k=1}^{m} (2k - 1) = m^2$ for all $1 \le m \le n$
inductive step $n \to n + 1$:

$$\sum_{k=1}^{n+1} (2k-1) = \left(\sum_{k=1}^{n} (2k-1)\right) + 2(n+1) - 1$$
$$\stackrel{\text{IH}}{=} n^2 + 2(n+1) - 1$$
$$= n^2 + 2n + 1 = (n+1)^2$$

Direct Proof

Indirect Pro

Contrapositive

 $\underset{\texttt{OOOO}}{\texttt{Mathematical Induction}}$

Summary 00

Questions

Questions?

Introduction	Direct Proof	Indirect Proof	Contrapositive	Mathematical Induction	Summary
00000000000	0000	0000	000		●0

Summary

Introduction	Direct Proof	Indirect Proof	Contrapositive	Mathematical Induction	Summary
00000000000	0000	0000	000		○●
Summary	/				

- A proof is based on axioms and previously proven statements.
- Individual proof steps must be obvious derivations.
- direct proof: sequence of derivations or rewriting
- indirect proof: refute the negated statement
- contrapositive: prove " $A \Rightarrow B$ " as "not $B \Rightarrow$ not A"
- mathematical induction: prove statement for a starting point and show that it always carries over to the next number