Algorithmen und Datenstrukturen
B7. Hashtabellen!

Marcel Liithi and Gabriele Roger
Universitat Basel

27. April 2023

1_
Folien basieren auf Vorlesungsfolien von Sedgewick & Wayne
https://algs4.cs.princeton.edu/lectures/34Hashtables-2x2.pdf

https://algs4.cs.princeton.edu/lectures/34Hashtables-2x2.pdf

Einfiihrung

Symboltabellen: Ubersicht

Worst-case Average-case
Implementation suchen einfiigen Idschen suchen (hit) einfiigen 18schen
Verkettete Liste N N N N/2 N N/2
Binire suche logo(N) N N log,(N) N/2 N
BST N N N log, () log,(N) VN
Rot-Schwarz Baume log,(N) logy(N) logy(N) log,(N) logo(N) logy(N)

Frage
Geht es noch besser?

Einfiihrung

ooe

Hashtabellen: ldee

Elemente werden in Array gespeichert, wobei Position durch
Schliissel bestimmt ist.

m Wichtigstes Werkzeug: Hashfunktion
m Berechnet Index aus Schliissel hash(hallo) -3

* “hallo”

© ® N o u &> w N » O

Einfiihrung

ooe

Hashtabellen: ldee

Elemente werden in Array gespeichert, wobei Position durch
Schliissel bestimmt ist.

Index

m Wichtigstes Werkzeug: Hashfunktion
m Berechnet Index aus Schliissel hash(hallo) -3

< “welt”

* “hallo”

hash(“welt”) = 1

© ® N @ u & w N » O

Einfiihrung

ooe

Hashtabellen: ldee

Elemente werden in Array gespeichert, wobei Position durch
Schliissel bestimmt ist.

haben gleichen Hashwert)

m Wichtigstes Werkzeug: Hashfunktion o M
m Berechnet Index aus Schliissel etaieyea /- b :
Herausforderungen: /il
m Hashfunktion berechnen A, :
m Kollisionen (2 unterschiedliche Schliissel pashCapter) =3 j
.
5

Hashfunktionen
0000000000000 00

Hashfunktionen

Einfiihrung Hashfunktionen
0@0000000000000

Hashfunktion: Ziele

m Konsistenz: Gleicher Schliissel sollte immer gleichen Hashwert
ergeben.
m Hashfunktion sollte effizient berechnet werden kdnnen.

m Schliissel sollten gleichverteilt sein.
m gleiche Wahrscheinlichkeit fiir jedes Feld

Einfiihrung Hashfunktionen

Quiz: Hashfunktion

Was sind mogliche Hashfunktionen fiir
Integer (32 Bit Ganzzahl)

m Datum

m Strings
m Bilder

Wie aufwindig ist jeweils die Berechnung der Hashfunktion?

Einfiihrung Hashfunktionen
000@00000000000

Hashfunktionen in Java

Alle Java Klassen erben Methode hashCode
Anforderung:

m Falls x.equals(y) dann x.hashCode() == y.hashCode ()
Gewiinscht:

m Falls !'x.equals(y) dann x.hashCode() ! = y.hashCode ()

Wenn immer equals iiberschrieben wird, muss auch hashCode
iiberschrieben werden.

Hashfunktionen
0000@0000000000

Beispiele von Hashfunktionen in Java

Integer:

public int hashCode() {
return this.value;

}

Einfiihrung Hashfunktionen
00000@000000000

Beispiele von Hashfunktionen in Java

String:

public int hashCode() {
int h = 0;
if (value.length > 0) {
char vall] value;

for (int i = 0; i < value.length; i++) {
h =31 h + vallil;

*

}

return h;

Einfiihrung Hashfunktionen
000 0000008000000 00

Beispiele von Hashfunktionen in Java

LinkedList:

public int hashCode() {
int hashCode = 1;
for (E e : this)
hashCode = 31 * hashCode + (e==null ? O : e.hashCode());
return hashCode;

Einfiihrung Hashfunktionen REE
000 0000000800000 00

Praktisches Rezept fiir benutzerdefinierte Typen

public int hashCode ()

{
int hash = 17;
hash = 31x*hash + fieldl.hashCode();
hash = 31xhash + field2.hashCode();
hash = 31x*hash + field3.hashCode();
return hash;

}

Funktioniert gut in Praxis - aber theoretisch nicht optimal.

Einfiihrung Hashfunktionen

0000000 0e000000

Praktische Tips

Gute Hashfunktionen zu entwerfen ist schwierig! J

Einige Tips:
m Alle Bits im Schliissel sollten bei Berechnung gleich
mitberiicksichtigt werden.
m Verbessert Verteilung!
m Experimentell iiberpriifen (plot?)
m Hashing ist klassischer Performancebug. (Alles lauft korrekt
aber Programm ist langsam.)

m Hashfunktion auf Effizienz priifen.
m Was ist schneller, Vergleich oder Hash?

Einfiihrung Hashfunktionen

000000000 e00000

Hashfuntionen in Python

m Hashfunktionen werden via die Methode __hash__ angegeben.

Called by built-in function hash() and for operations on members
of hashed collections including set, frozenset, and dict. __hash__()
should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to
mix together the hash values of the components of the object that
also play a part in comparison of objects by packing them into a
tuple and hashing the tuple.

Python Language Reference - Section 3: Data Model}

Einfiihrung Hashfunktionen
0000000000e0000

Modulares Hashing

Werte der Hashfunktion kdnnen negativ sein. Wir wollen aber
Werte zwischen 0 und M. J

m Positiven Hash-wert nehmen und Modulo M rechnen.
In Java:

private int modularHash(Key x) {
return (x.hashCode() & Ox7fffffff) % M;
}
In Python:

def modularHash(x):
return (hash(x) % ((sys.maxsize + 1) * 2) % M)

Einfiihrung Hashfunktionen
00000000000e000

Theoretische Analyse von Hashtabellen

Typische Annahme

Die von uns verwendeten Hashfunktionen verteilen die Schliissel
gleichmaBig und unabhangig voneinander auf die Integer-Werte
zwischen O und M — 1.

900

L
[L ® o [L JK
o 1 2 3 5 6 7 8 9 10 11 12

Bille werden zufillig in M verschiedene Gefédsse verteilt.

Einfiihrung Hashfunktionen

00000000000 0e00

Kollisionen

Wir kdnnen Kollisionen nicht verhindern. J

Beispiele relevanter mathematischer Resultate:

Geburtstagsparadox In einer Gruppe von 23 Kindern ist die
Wabhrscheinlichkeit 0.5, dass zwei am selben Tag
Geburtstag haben.
m Angewandt auf hashing: Anzahl Platze:
M = 365, Nach N = 23 Elementen bereits
grosse Chance, dass Kollision auftritt.
m Allgemein: Wir erwarten Kollision nach ungefihr

\/7™M /2 Elementen.

Einfiihrung Hashfunktionen

0000000000000 e0

Kollisionen

Wir kdnnen Kollisionen nicht verhindern. J

Beispiele relevanter mathematischer Resultate:

Sammelbilderproblem Gegeben M Sammelbilder, wieviele Bilder
muss man ziehen (mit zuriicklegen), bevor man jedes
einmal gezogen hat?

m Angewandt auf hashing: Wie lange dauert es bis
alle Felder besetzt sind?
m Der Erwartungswert wéchst mit ©(M log(M))

Um M = 50 unterschiedliche Sammelbilder zu haben
bendtigen wir ungefihr 50 log(50) ~ 200 Bilder

Hashfunktionen

0000000000000

Experimente

Zjupyter untitied ausa
Fle Edt View et Col Kemel Help

| Python [Roof] O
B+ x @A B 4 v N EC e

© Cellobar & @ ©

Algorithmen und Datenstrukturen

Interaktive Experimente
In 13]: %pylab inline
Populating Lhe inleraclive namespace Lrom aumpy and malplollib

In 171 plot(linspace(0, 1000), (lins)

ce (0,1000) **2))
Out17]: [<matplotlib.lines.Tine2D at 0x29d8be027a8>]

1000000

800000

00000

00000

200000

20 0 EQ EQ 000

IPython Notebooks: Hashtables.ipynb

Hashtabellen
©000000000000000

Hashtabellen

Hashtabellen

Einfiihrung
[e]e]e} O@00000000000000

Hashtabelle: 2 Implementationen

Grundlage ist immer ein Array der Grosse M um N Eintrage zu
speichern.
Wichtigste Frage: Wie behandle ich Kollisionen?
2 Strategien
m Verkettung (separate chaining)
m Jedes Element enthilt Verkettete Liste mit allen Schliissel /
Werte Paaren
m M kann kleiner sein als N
m Lineare Sondierung (linear probing)
m M wird grosser gewihlt als N.
® Suche nach nichstem freien Platz.

Hashtabellen
00®0000000000000
Verkettung

Hash: Schliissel wird auf Zahl zwischen 0 und M — 1
gemappt.

Einfligen: Falls nicht gefunden, am Anfang in Liste enfiigen

Suche: Relevante Liste durchsuchen

Index _—

——— null

—]
i m o

O00@000000000000

Einfiihrung as Hashtabellen

Komplexitat

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schliisseln ist die Wahrscheinlichkeit (unter der
Gleichverteilungsannahme), dass die Anzahl der Schliissel in einer
Liste bis auf einen kleinen konstanten Faktor bei N/M liegt,
extrem nahe an 1.)

Einfiihrung Hashfunktioner Hashtabellen

O00@000000000000

Komplexitat

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schliisseln ist die Wahrscheinlichkeit (unter der
Gleichverteilungsannahme), dass die Anzahl der Schliissel in einer
Liste bis auf einen kleinen konstanten Faktor bei N/M liegt,
extrem nahe an 1.

.

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schliisseln ist die Anzahl der Vergleiche (Gleichheitstests) fiir
Einfiigungen und erfolglose Suchen ~ N /M.

N

Hashtabellen
0000®00000000000

Verkettung: Elemente Loschen

m Einfache Operation: Element aus relevanter Liste l6schen.

inde = i "
0 o -
1 Tl 1 B null
T e [7 By s [0 2 — a-Ja
3 ~—_ 3 N

L |3 g P 10 ——— -

Verkettung: Grossenanpassung

m Ziel: Lange N/M bleibt etwa konstant
m Alle Elemente miissen neu gehashed werden.

ol

‘ } EI
e G 6 B
Index

o E8

N
|
|
|
\
-
wv

w

~

o8 om;
008 B8

Hashtabellen
000000@000000000

Implementation und Beispielanwendung

Zjupyter untitied ausa

Fle Edt View Inset Cel Kemel Help

| Python [Roof] O
B+ x @A B 4 v N EC e

Y @ Celoobar & @ ©

Algorithmen und Datenstrukturen

Interaktive Experimente
In 13]: %pylab inline

Populating Lhe inleraclive namespace Lrom aumpy and malplollib
In 171 | plot(linspace(0, 1000), (Linspace(0,1000) **2))
Outl71: [<matplotlib.lines.Tine2D at 0x29d8be022e8>)

1000000

800000

00000

00000

200000

IPython Notebooks: Hashtables.ipynb

Einfiihrung Hashtabellen

0000000800000 000

Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfligen: An Position i einfiigen.
m Falls belegt, probiere Position i +1, i + 2, ...

Insert S
hash(S)=2

o 1 2

; 3 4 5 6 7 8 9 10 11 12 13 14
.

15

Einfiihrung Hashtabellen

0000000800000 000

Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfligen: An Position i einfiigen.
m Falls belegt, probiere Position i +1, i + 2, ...

Insert E
hash(E)=0

o/ 1 2

3 4 5 6 7 8 9 10 11 12 13 14
¥
HEDEEEEEEEEE .
L1 1 | | | I _— I

15

Einfiihrung Hashtabellen

0000000800000 000

Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfligen: An Position i einfiigen.
m Falls belegt, probiere Position i +1, i + 2, ...

Insert A
hash(A)=0

o/ 1 2

3 4 5 6 7 8 9 10 11 12 13 14
¥
NSNS EEEE .
L1 1 | | | I _— I

15

Einfiihrung Hashtabellen

0000000800000 000

Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfiigen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...
Suche: Suche an Index i

m Falls nicht leer, aber Eintrag | = gesuchter
Schliissel, suche an Position 7 + 1,/ 4 2, etc.

Insert A
hash(A)=0

8 9

o 2 3 4 5 6 7 10 11 12 13 14
HEENNE -

15

Einfiihrung Hashtabellen

0000000800000 000

Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfiigen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...
Suche: Suche an Index i

m Falls nicht leer, aber Eintrag | = gesuchter
Schliissel, suche an Position 7 + 1,/ 4 2, etc.

Insert R
hash(R)=4

8

o 1 2 3 4 5 6 7 9 10 11 12 13 14
HEENNE e

15

Einfiihrung Hashtabellen

0000000800000 000

Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfiigen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...
Suche: Suche an Index i

m Falls nicht leer, aber Eintrag | = gesuchter
Schliissel, suche an Position 7 + 1,/ 4 2, etc.

Suche A
hash(A)=0

8

o 1 2 3 4 5 6 7 9 10 11 12 13 14
HEENEN e

15

Einfiihrung Hashtabellen

0000000800000 000

Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfiigen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...
Suche: Suche an Index i

m Falls nicht leer, aber Eintrag | = gesuchter
Schliissel, suche an Position 7 + 1,/ 4 2, etc.

Suche A
hash(A)=0

8

o 1 2 3 4 5 6 7 9 10 11 12 13 14
HEENEN e

15

Hashtabellen

Einfiihrung
000 O0000000e0000000

Lineare Sondierung: Elemente Loschen

m Wenn erstes Element in Cluster geloscht wird, miissen
Nachfolger geldscht werden.

sovose |l o

Was ist wenn hash(1)=7?
o 1 2 4 5 7 8 10 11 13 14
il e ol e e o s 0

3 6 9 12 15

Eumw rung Hashfunktionen Hashtabellen

000000000 e000000

Lineare Sondierung: Grossenanpassu ng

m Ziel: Linge N/M <1/2

m Alle Elemente miissen neu gehashed werden.

o 1

- RN ENEN

Hashtabellen
0000000000e00000

Implementation und Beispielanwendung

Zjupyter untitied ausa

Fle Edt View Inset Cel Kemel Help

| Python [Roof] O
B+ x @A B 4 v N EC e

Y @ Celoobar & @ ©

Algorithmen und Datenstrukturen

Interaktive Experimente
In 13]: %pylab inline

Populating Lhe inleraclive namespace Lrom aumpy and malplollib
In 171 | plot(linspace(0, 1000), (Linspace(0,1000) **2))
Outl71: [<matplotlib.lines.Tine2D at 0x29d8be022e8>)

1000000

800000

00000

00000

200000

IPython Notebooks: Hashtables.ipynb

Einfiihrung as Hashtabellen

00000000000 e0000

Clustering

Beobachtung
Lineares Sondieren fiihrt zu Clusterbildung.

m Bei Kollision wachst ein Cluster, da das Element am Ende
eingefiigt wird.

Kl

Hashtabellen
000000000000e000

Clustering

Beobachtung

Lange Cluster wachsen schneller als kurze.

9/64-Chance, dass der neue
Schliissel dieses Cluster vergrifiert

vorher
o o . o oo [Fssseeiie]eessessssseee so ses & s e o
m Wahrscheinlichkeit in einem Schlissel landet in
. /diesem Fall hier
grossen Cluster zu landen ist v e eusssereneliomserenens ss sue o s oe o
= d bildet ein viel
grosser' nachher let'lz'ngelreftcel,uy;tvelrﬁ

Quelle: Abb. 3.60, Algorithmen, Wayne & Sedgewick

Einfiihrung as| k e Hashtabellen
00000000000« 0000000000000 e00

Clustering

Beobachtung
Laufzeit der Suche hangt von Linge der Cluster ab.

In einer auf linearer Sondierung basierenden Hashtabelle mit einer
Liste der Grésse M und N = M Schliisseln ist die erforderliche
durchschnittliche Anzahl von Sondierungen fiir erfolgreiches
beziehungsweise erfolgloses Suchen

1 1 1 1
~Z (14— d ~=(1+——+
(tita) e =5 (1 ap)

Einfiihrung

Hashtabellen

0000000000000 0e0

Komplexitat

Worst-case Average-case
Implementation suchen einfiigen 18schen suchen (hit) einfiigen l8schen
Verkettete Liste N N N N/2 N N/2
Binire suche logo(N) N N log,(N) N/2 N
BST N N N log, (N) loga(N) VN
Rot-Schwarz Baume log,(N) logy(N) logy(N) log,(N) logo(N) logy(N)
Hashtabellen N N N 0o(1) 0o(1) 0o(1)

Einfithrun Hashtabellen

0000000000000 00O

Diskussion

Wann sollen wir welche Art von Datenstruktur verwenden?

guarantee average case
ordered key
implementation g
ops? interface
e M
sequential search
Gunordered lis) N N ®BN N BN equals()
binary search
Cremdeny BN N N leN BN BN v comareToO
BsT N N N 139N 139N VN v comareToO
red-black BT 21gN 21N 21gN 10N 10lgN 10lgN v compareToQ)
separate chaining N N N 35+ 35+ 35+ e
linear probing N N N 35+ 35+ 35+ hi‘ZZZEZﬁ)

Abbildung: Sedgewick & Wayne, Tabelle 3.15

	Einführung
	

	Hashfunktionen
	

	Hashtabellen
	

