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B4. Heaps und Heapsort Einfiihrung
Hinweis

» Achtung: Deadline fiir die Anmeldung zum Examen: 17. April
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B4. Heaps und Heapsort

Ausblick auf Vorlesung

» Die Datenstruktur Heap
» Heaps zur Implementation von Priorityqueues

» Heapsort
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B4. Heaps und Heapsort Einfiihrung

Informatiker des Tages

» Gewinner Turing Award (1978)

> U.a. fiir Arbeit an Analyse von
Algorithmen

> Entwickler des Treesort
Algorithmus (Vorganger von
Heapsort)
» Verbesserung von Heapsort,
nachdem dieser von J. Williams
entwickelt wurde.

» Auch bekannt fiir: Floyd-Warshall

B4. Heaps und Heapsort

B4.2 Heaps
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Algorithmus
> Findung von kiirzesten Pfaden in
Robert W. Fl
obert oyd Graphen.
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B4. Heaps und Heapsort Heaps

Bijektion - Array / Vollstandiger Bindrbaum

» Jedes Array kann als vollstandiger Bindrbaum interpretiert
werden:
» Linker Teilbaum: Index Wurzel * 2
» Rechter Teilbaum: Index Wurzel * 2 4+ 1
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Quelle: Abbildung 2.26, Algorithms, Sedgewick & Wayne
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B4. Heaps und Heapsort Heaps

Heap

Definition: Heap

Ein bindrer Baum / Array ist Heap geordnet, wenn der Schliissel in
jedem Knoten grosser gleich dem Schliissel seiner beiden Kindern
(sofern vorhanden) ist.

Quelle: Abbildung 2.25, Algorithmen, Wayne & Sedgewick
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Binarer Heap

Definition: Bindrer Heap

Ein bindrer Heap ist eine Sammlung von Schliisseln, die in einem
vollstandigen Heap-geordneten Bindrbaum angeordnet sind und in
einem Array ebenenweise reprasentiert werden (das erste Feld des
Arrays wird nicht verwendet).
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B4. Heaps und Heapsort Heaps
Heap Ordnung
Theorem
Der grésste Schliissel in einem Heap-geordneten Bindrbaum
befindet sich an der Wurzel.
Beweis.
Induktion iiber die Baumhohe. O
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B4. Heaps und Heapsort Heaps
Bindrer Heap
i 0 1 2 3 4 5 6 7 8 91011
al[i] - T S R P N O A E I H G
T
AN
}i\\
m
E I H G
Quelle: Abbildung 2.26, Algorithmen, Wayne & Sedgewick
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B4. Heaps und Heapsort Warteschlangen mit Heaps

B4.3 Warteschlangen mit Heaps

B4. Heaps und Heapsort Warteschlangen mit Heaps

Priority Queue ADT

class MaxPQ[Item]:

# Element einfuegen
def insert(k : Item) -> None

# Groesstes Element zurueckgeben
def max () -> Item

# Groesstes Element entfernen und zurueckgeben
def delMax() -> Item

# Ist die Queue leer?
def isEmpty() -> bool

# Anzahl Elemente in der Priority (ueue
def size() -> int
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B4. Heaps und Heapsort Warteschlangen mit Heaps
Beobachtung

Array implementation von Max-heap hat grosstes Element immer
an Stelle 1 .

» Implementation von max ist trivial

Problem: Wir miissen wenn wir beim insert und delMax die
Heapbedingung erfiillen kdnnen.
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B4. Heaps und Heapsort Warteschlangen mit Heaps

Beobachtung (2)

» Array implementation erlaubt uns in konstanter Zeit zu jedem
Kind den Elternknoten und von jedem Elternknoten alle
Kinder finden ...

... ohne dabei explizite Verweise verwalten zu miissen .

» Der Baum hat die Hohe [log,(N)]

Plan

Durch geschicktes Vertauschen der Eltern/Kinder in O(log,(N))
Operationen nach Entfernen oder Einfiigen eines Elements die
Heapbedingung wiederherstellen.
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B4. Heaps und Heapsort

Element einfiigen

> Blatt wird an letzter Stelle
im Array eingefiigt
> entspricht Blatt ganz
rechts
» Heap Bedingung wird durch
Ausfiihren von swim
wiederhergestellt
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Warteschlangen mit Heaps

Einfiigen eines
neuen Elements

zum Heap verletz
Heap-Ordnung

Quelle: Abbildung 2.29: Algorithmen, Sedgewick &

Wayne
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B4. Heaps und Heapsort

Die Operation swim

» Knoten an Position k in Array a
schwimmt nach oben bis Heap
Bedingung wieder erfiillt ist.

» Braucht maximal log,(N)
Vergleiche.

def swim(a, k):
while k > 1 and alk/2] < alk]:

alk/2], alk]l = alk]l, alk/2]
k = k/2
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Warteschlangen mit Heaps
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Quelle: Abbildung 2.29: Algorithmen,
Sedgewick & Wayne

12. April 2023 18 / 29

B4. Heaps und Heapsort

Grosstes Element entfernen

» Wourzel (grosstes Element)
wird entfernt

> Blatt ganz rechts wird an
Wourzel gesetzt

» Heap Bedingung wird durch
ausfiihren von sink
wiederhergestellt
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Warteschlangen mit Heaps

Entfernen des
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Quelle: Abbiludung 2.29: Algorithmen, Sedgewick &
Wayne
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Die Operation sink

» Knoten an Position k in Array a
sinkt nach unten bis Heap
Bedingung wieder erfiillt ist.

» Element wird mit grosserem Kind
vertauscht.

» Braucht maximal 2log,(N)
Vergleiche.

def sink(a, k):
while 2 * k <= len(a):

j= 2%k

if j < len(a) and aljl < alj+1]:
jo+=1

if not alk] < aljl:
break

aljl, alk]l = alkl, aljl

k =3
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Warteschlangen mit Heaps

verletzt die Heap-Ordnung
(kleiner als ein Kindknoten)
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Quelle: Abbiludung 2.29: Algorithmen,
Sedgewick & Wayne
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B4. Heaps und Heapsort

Warteschlangen mit Heaps B4. Heaps und Heapsort Warteschlangen mit Heaps
Implementation Komplexitat
Zjupyter untitled wscs
File  Edit  View Insert  Cell  Kemel  Help # | Python [Root] O
+ 3 BB A N EC e © @ | celfoobar | & @ @
Algorithmen und Datenstrukturen
e o Theorem
Interaktive Experimente . 3 . 3
i In einer Vorrangwarteschlange mit N Elementen benétigen die
o Heap-Algorithmen zum Einfiigen eines neuen Elements nicht mehr
B als 1+ log,(N) Vergleiche und zum Entfernen des gréssten
Elements nicht mehr als 2 log,(N) Vergleiche.
Juypter Notebook: Heap.ipynb
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Heapsort

Ein Sortieralgorithmus

» Gegeben, ein unsortiertes Array der lange N .

B44 Hea psort > Fiige alle Elemente der Reihe nach in einen Heap ein.

» Entferne N mal das grosste Element und schreibe es zuriick
ins Array.

Komplexitat

Die Prozedur hat garantierte Laufzeitkomplexitat von
O(N logy(N).
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B4. Heaps und Heapsort

Heapsort

» Idee: Geschicktes verwenden von swim und sink ldsst uns
heapsort in-place verwenden.

» Prozedur verlauft in zwei Phasen:

@ Heap Konstruktion (rechts nach Links)
@ Absteigendes Sortieren durch sukkzesives Tauschen von
grosstem Element

def heapsort(a):

N = len(a) -1

for k in range(int(N/2), 0, -1):
sink(a, k)

while N > 1:
al1], alN] = alN], al1]
N -=1
sink(a, 1, N)
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Heapsort

Heap-Konstruktion
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Quelle: Abbildung 2.31, Algorithmen, Wayne & Sedgewick
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Implementation
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Interaktive Experimente
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Jupyter Notebook: Heap.ipynb
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Bemerkungen

» Heapsort ist theoretisch wichtig:
> Optimal hinsichtlich Zeit und Speichernutzung

> Laufzeit O(nlog n).

> Zusatzlicher Speicher (O(1))
P Praktische Bedeutung eher klein
» Nutzt CPU Cache nicht effizient, da entfernte Elemente

ausgetauscht werden.

» Heaps sind aber fiir Priority Queues sehr wichtig!
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B4. Heaps und Heapsort

Zusammenfassung

» Heap-sort Algorithmus von Datenstruktur " getrieben”

» Nutzt nicht triviale Zwischenschritte und Hilfsstrukturen
» Nutzung von Eigenschaften vollstandiger bindre Baume
> Effiziente Implementation mittels Arrays
» Heap Bedingung um grosstes Element zu erhalten

> Verstindnis von Heap ist zentral fiir Algorithmus

» Danach ist Algorithmus einfach zu verstehen
» Laufzeitanalyse trivial

Show me your algorithm and conceal your data structures, and |
shall continue to be mystified. Show me your data structures, and |
won't usually need your algorithm; it'll be obvious

Fred Brooks (paraphrased)
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