Algorithmen und Datenstrukturen
B4. Heaps und Heapsort

Marcel Liithi and Gabriele Roger
Universitat Basel

12. April 2023

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 1/29

Algorithmen und Datenstrukturen
12. April 2023 — B4. Heaps und Heapsort

B4.1 Einfiihrung
B4.2 Heaps
B4.3 Warteschlangen mit Heaps

B4.4 Heapsort

B4. Heaps und Heapsort Einfiihrung

B4.1 Einfiihrung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 3/29

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 2/29
B4. Heaps und Heapsort Einfiihrung
Hinweis

» Achtung: Deadline fiir die Anmeldung zum Examen: 17. April

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 4 /29

B4. Heaps und Heapsort

Ausblick auf Vorlesung

» Die Datenstruktur Heap
» Heaps zur Implementation von Priorityqueues

» Heapsort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

B4. Heaps und Heapsort Einfiihrung

Informatiker des Tages

» Gewinner Turing Award (1978)

> U.a. fiir Arbeit an Analyse von
Algorithmen

> Entwickler des Treesort
Algorithmus (Vorganger von
Heapsort)
» Verbesserung von Heapsort,
nachdem dieser von J. Williams
entwickelt wurde.

» Auch bekannt fiir: Floyd-Warshall

B4. Heaps und Heapsort

B4.2 Heaps

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Algorithmus
> Findung von kiirzesten Pfaden in
Robert W. Fl
obert oyd Graphen.
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 6 /29
B4. Heaps und Heapsort Heaps

Bijektion - Array / Vollstandiger Bindrbaum

» Jedes Array kann als vollstandiger Bindrbaum interpretiert
werden:
» Linker Teilbaum: Index Wurzel * 2
» Rechter Teilbaum: Index Wurzel * 2 4+ 1

i 01 2 3 4 5 6 7 8 91011
a[il] - T S R P N OATETITHG

T\\
\G

Quelle: Abbildung 2.26, Algorithms, Sedgewick & Wayne

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 8 /29

B4. Heaps und Heapsort Heaps

Heap

Definition: Heap

Ein bindrer Baum / Array ist Heap geordnet, wenn der Schliissel in
jedem Knoten grosser gleich dem Schliissel seiner beiden Kindern
(sofern vorhanden) ist.

Quelle: Abbildung 2.25, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 9 /29

B4. Heaps und Heapsort Heaps

Binarer Heap

Definition: Bindrer Heap

Ein bindrer Heap ist eine Sammlung von Schliisseln, die in einem
vollstandigen Heap-geordneten Bindrbaum angeordnet sind und in
einem Array ebenenweise reprasentiert werden (das erste Feld des
Arrays wird nicht verwendet).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 11 /29

B4. Heaps und Heapsort Heaps
Heap Ordnung
Theorem
Der grésste Schliissel in einem Heap-geordneten Bindrbaum
befindet sich an der Wurzel.
Beweis.
Induktion iiber die Baumhohe. O
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 10 / 29
B4. Heaps und Heapsort Heaps
Bindrer Heap
i 0 1 2 3 4 5 6 7 8 91011
al[i] - T S R P N O A E I H G
T
AN
}i\\
m
E I H G
Quelle: Abbildung 2.26, Algorithmen, Wayne & Sedgewick
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 12 /29

B4. Heaps und Heapsort Warteschlangen mit Heaps

B4.3 Warteschlangen mit Heaps

B4. Heaps und Heapsort Warteschlangen mit Heaps

Priority Queue ADT

class MaxPQ[Item]:

Element einfuegen
def insert(k : Item) -> None

Groesstes Element zurueckgeben
def max () -> Item

Groesstes Element entfernen und zurueckgeben
def delMax() -> Item

Ist die Queue leer?
def isEmpty() -> bool

Anzahl Elemente in der Priority (ueue
def size() -> int

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 14 / 29

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023
B4. Heaps und Heapsort Warteschlangen mit Heaps
Beobachtung

Array implementation von Max-heap hat grosstes Element immer
an Stelle 1 .

» Implementation von max ist trivial

Problem: Wir miissen wenn wir beim insert und delMax die
Heapbedingung erfiillen kdnnen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023

B4. Heaps und Heapsort Warteschlangen mit Heaps

Beobachtung (2)

» Array implementation erlaubt uns in konstanter Zeit zu jedem
Kind den Elternknoten und von jedem Elternknoten alle
Kinder finden ...

... ohne dabei explizite Verweise verwalten zu miissen .

» Der Baum hat die Hohe [log,(N)]

Plan

Durch geschicktes Vertauschen der Eltern/Kinder in O(log,(N))
Operationen nach Entfernen oder Einfiigen eines Elements die
Heapbedingung wiederherstellen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 16 / 29

B4. Heaps und Heapsort

Element einfiigen

> Blatt wird an letzter Stelle
im Array eingefiigt
> entspricht Blatt ganz
rechts
» Heap Bedingung wird durch
Ausfiihren von swim
wiederhergestellt

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

Warteschlangen mit Heaps

Einfiigen eines
neuen Elements

zum Heap verletz
Heap-Ordnung

Quelle: Abbildung 2.29: Algorithmen, Sedgewick &

Wayne

12. April 2023 17 /29

B4. Heaps und Heapsort

Die Operation swim

» Knoten an Position k in Array a
schwimmt nach oben bis Heap
Bedingung wieder erfiillt ist.

» Braucht maximal log,(N)
Vergleiche.

def swim(a, k):
while k > 1 and alk/2] < alk]:

alk/2], alk]l = alk]l, alk/2]
k = k/2

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

Warteschlangen mit Heaps

g O 0O
T
G o @5 @ verletzt die Heap-Ordnung

(Schliissel grofer
als Elternknoten)
1

0
pO (R)
L) © ®

@ ©

Quelle: Abbildung 2.29: Algorithmen,
Sedgewick & Wayne

12. April 2023 18 / 29

B4. Heaps und Heapsort

Grosstes Element entfernen

» Wourzel (grosstes Element)
wird entfernt

> Blatt ganz rechts wird an
Wourzel gesetzt

» Heap Bedingung wird durch
ausfiihren von sink
wiederhergestellt

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

Warteschlangen mit Heaps

Entfernen des
~— zu entfernender

gréBten Elements Schliissel
R ©®

(3 ‘; ‘3 CD‘,&MMWW
Wurzel tauschen

< verletzt die
Heap-Ordnung
(5] ﬁ
O ®» @ ®
® O @ T

sinkt nach
unten

Quelle: Abbiludung 2.29: Algorithmen, Sedgewick &
Wayne

12. April 2023 19 /29

B4. Heaps und Heapsort

Die Operation sink

» Knoten an Position k in Array a
sinkt nach unten bis Heap
Bedingung wieder erfiillt ist.

» Element wird mit grosserem Kind
vertauscht.

» Braucht maximal 2log,(N)
Vergleiche.

def sink(a, k):
while 2 * k <= len(a):

j= 2%k

if j < len(a) and aljl < alj+1]:
jo+=1

if not alk] < aljl:
break

aljl, alk]l = alkl, aljl

k =3

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

Warteschlangen mit Heaps

verletzt die Heap-Ordnung
(kleiner als ein Kindknoten)

7 T @& ®
10
& D@ ©

Quelle: Abbiludung 2.29: Algorithmen,
Sedgewick & Wayne

12. April 2023 20 / 29

B4. Heaps und Heapsort

Warteschlangen mit Heaps B4. Heaps und Heapsort Warteschlangen mit Heaps
Implementation Komplexitat
Zjupyter untitled wscs
File Edit View Insert Cell Kemel Help # | Python [Root] O
+ 3 BB A N EC e © @ | celfoobar | & @ @
Algorithmen und Datenstrukturen
e o Theorem
Interaktive Experimente . 3 . 3
i In einer Vorrangwarteschlange mit N Elementen benétigen die
o Heap-Algorithmen zum Einfiigen eines neuen Elements nicht mehr
B als 1+ log,(N) Vergleiche und zum Entfernen des gréssten
Elements nicht mehr als 2 log,(N) Vergleiche.
Juypter Notebook: Heap.ipynb
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 21 /29 M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 22 /29
B4. Heaps und Heapsort Heapsort B4. Heaps und Heapsort

Heapsort

Ein Sortieralgorithmus

» Gegeben, ein unsortiertes Array der lange N .

B44 Hea psort > Fiige alle Elemente der Reihe nach in einen Heap ein.

» Entferne N mal das grosste Element und schreibe es zuriick
ins Array.

Komplexitat

Die Prozedur hat garantierte Laufzeitkomplexitat von
O(N logy(N).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 23 /29

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023 24 /29

B4. Heaps und Heapsort

Heapsort

» Idee: Geschicktes verwenden von swim und sink ldsst uns
heapsort in-place verwenden.

» Prozedur verlauft in zwei Phasen:

@ Heap Konstruktion (rechts nach Links)
@ Absteigendes Sortieren durch sukkzesives Tauschen von
grosstem Element

def heapsort(a):

N = len(a) -1

for k in range(int(N/2), 0, -1):
sink(a, k)

while N > 1:
al1], alN] = alN], al1]
N -=1
sink(a, 1, N)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023

B4. Heaps und Heapsort

Heapsort

Heap-Konstruktion

sink(4, 11)

@
®®

sink@3, 11)

sink(2, 11)

0

®©Q© ® ®

sink(1, 11)

absteigend Sortieren

X, ana 8 @)
(T 19 O ®
o | d® & WO o

¢ w do» & o«
®E><

ECE I o e
(PY (R) @ ®
(0 © ©®® L
™ ® T

St 3 e S B ©
¢) A a2 @/ .
© L @®
® s
fTﬁC(g B ®
O O] E
) © ©®®

¢
exchcl, 7) :
S & © A

leND)
O: 2E GE
0] © P ‘L ‘Moo e
5 i

R

Quelle: Abbildung 2.31, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 12. April 2023

B4. Heaps und Heapsort

Implementation

ZJupyter Untitied wesmea
File Edt View Inset Cell Kemel Help # | Python [Root] O

B+ & B ¢ N EC Coue Y & Celloobar & @& O

Algorithmen und Datenstrukturen

Interaktive Experimente

ampy and matplotlin

k)

ontlil: l<matplot

1000000

#0000

00000

400000

200000

0 W0 w0 W0 000

Jupyter Notebook: Heap.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023

B4. Heaps und Heapsort

Bemerkungen

» Heapsort ist theoretisch wichtig:
> Optimal hinsichtlich Zeit und Speichernutzung

> Laufzeit O(nlog n).

> Zusatzlicher Speicher (O(1))
P Praktische Bedeutung eher klein
» Nutzt CPU Cache nicht effizient, da entfernte Elemente

ausgetauscht werden.

» Heaps sind aber fiir Priority Queues sehr wichtig!

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 12. April 2023

B4. Heaps und Heapsort

Zusammenfassung

» Heap-sort Algorithmus von Datenstruktur " getrieben”

» Nutzt nicht triviale Zwischenschritte und Hilfsstrukturen
» Nutzung von Eigenschaften vollstandiger bindre Baume
> Effiziente Implementation mittels Arrays
» Heap Bedingung um grosstes Element zu erhalten

> Verstindnis von Heap ist zentral fiir Algorithmus

» Danach ist Algorithmus einfach zu verstehen
» Laufzeitanalyse trivial

Show me your algorithm and conceal your data structures, and |
shall continue to be mystified. Show me your data structures, and |
won't usually need your algorithm; it'll be obvious

Fred Brooks (paraphrased)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12. April 2023

Heapsort

29

29

	Einführung
	

	Heaps
	

	Warteschlangen mit Heaps
	

	Heapsort
	

