Algorithmen und Datenstrukturen
A13. Sortieren: Countingsort & Radixsort

Marcel Liithi and Gabriele Roger

Universitat Basel

22. Marz 2023

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

22. Mirz 2023

1/

Algorithmen und Datenstrukturen
22. Mé&rz 2023 — A13. Sortieren: Countingsort & Radixsort

A13.1 Nicht vergleichsbasierte Verfahren

A13.2 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 22. Mirz 2023

2/14

A13. Sortieren: Countingsort & Radixsort Nicht vergleichsbasierte Verfahren

A13.1 Nicht vergleichsbasierte
Verfahren

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 22. Mirz 2023 3 /14

A13. Sortieren: Countingsort & Radixsort Nicht vergleichsbasierte Verfahren

Sortierverfahren

| Vergleichsbasierte
Verfahren

Radixsort

Uberblick und
Ausblick

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 22. Mirz 2023 4 /14

A13. Sortieren: Countingsort & Radixsort Nicht vergleichsbasierte Verfahren

Countingsort: Idee

»Sortieren durch Zahlen*
» Annahme: Elemente sind aus Bereich 0,..., k — 1.

» Laufe einmal iiber die Eingabesequenz und z&hle dabei,
wie oft jedes Element vorkommt.

» Sei #i die Anzahl der Vorkommen von Element i.
> Iteriere i=0,...,k—1 und
schreibe jeweils #i-mal Element / in die Sequenz.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 22. Mirz 2023 5/ 14

A13. Sortieren: Countingsort & Radixsort Nicht vergleichsbasierte Verfahren

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros
3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):
10 array[pos + j]l =i

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grosse der Eingabesequenz)
— Fiir festes k linear

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 22. Mirz 2023 6 /14

A13. Sortieren: Countingsort & Radixsort Nicht vergleichsbasierte Verfahren

Sortierverfahren

| Vergleichsbasierte
Verfahren

Countingsort

Uberblick und
Ausblick

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 22. Mirz 2023 7/ 14

A13. Sortieren: Countingsort & Radixsort Nicht vergleichsbasierte Verfahren

Radixsort: Idee

., Sortieren durch Fachverteilen*

» Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462
» Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96
983 286

» Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

» Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.
» Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.
» usw. bis alle Stellen betrachtet wurden.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 22. Mirz 2023 8 /14

A13. Sortieren: Countingsort & Radixsort

Radixsort: Beispiel

> Eingabe: 263, 983, 96, 462, 286
> Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286

> Aufteilung nach vorletzter Stelle:

0 1 2 3 4 5 6 7 8
462 983
263 286

Aufsammeln ergibt: 462, 263, 983, 286, 96
> Aufteilung nach drittletzter Stelle:

0 1 2 3 4 5 6 7 8
096 263 462
286

Aufsammeln ergibt: 96, 263, 286, 462, 983

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

9
96

983

22. Marz 2023

9/

Nicht vergleichsbasierte Verfahren

14

A13. Sortieren: Countingsort & Radixsort Nicht vergleichsbasierte Verfahren

Jupyter-Notebook

L
_
Jupyter
o

Jupyter-Notebook: radix_sort.ipynb

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 22. Mirz 2023 10 / 14

A13. Sortieren: Countingsort & Radixsort

Radixsort: Algorithmus (fiir beliebige Basis)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 22. Mirz 2023

def sort(array, base=10):

if not array: # array is empty
return
iteration = 0
max_val = max(array) # identify largest element
while base ** iteration <= max_val:
buckets = [[] for num in range(base)]
for elem in array:
digit = (elem // (base ** iteration)) 7, base
buckets[digit] .append(elem)
pos = 0
for bucket in buckets:
for elem in bucket:
array[pos] = elem
pos += 1
iteration += 1

Nicht vergleichsbasierte Verfahren

11/ 14

A13. Sortieren: Countingsort & Radixsort Nicht vergleichsbasierte Verfahren

Radixsort: Laufzeit

» m: Maximale Anzahl Stellen in Reprisentation
mit gegebener Basis b.

» n: Lange der Eingabesequenz
» Laufzeit in O(m - (n+ b))

Fir festes m und b hat Radixsort lineare Laufzeit.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 22. Mirz 2023 12 / 14

A13. Sortieren: Countingsort & Radixsort Zusammenfassung

A13.2 Zusammenfassung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 22. Mirz 2023 13 / 14

A13. Sortieren: Countingsort & Radixsort Zusammenfassung

Zusammenfassung

» Countingsort und Radixsort sind nicht vergleichsbasiert
und erlauben (unter bestimmten Restriktionen)
ein Sortieren in linearer Zeit.

> Sie machen jedoch zusatzliche Einschrankungen
an die verwendeten Schliissel.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 22. Marz 2023 14 / 14

	Nicht vergleichsbasierte Verfahren
	

	Zusammenfassung
	

