Algorithmen und Datenstrukturen
A12. Sortieren: Quicksort (& Heapsort)

Marcel Liithi and Gabriele Réger

Universitdt Basel

16. Marz 2023

Algorithmen und Datenstrukturen
16. Méarz 2023 — A12. Sortieren: Quicksort (& Heapsort)

A12.1 Quicksort

A12.2 Heapsort

A12.3 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 1/17
A12. Sortieren: Quicksort (& Heapsort) Quicksort
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 3/17

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 2 /17
A12. Sortieren: Quicksort (& Heapsort) Quicksort
Sortierverfahren
—| Insertionsort |
—| Mergesort |
Nicht —
vergleichsbasierte Mln.lmale
Wil Vergleichszahl
= : —| Heap Sort |
Uberblick und
Ausblick
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 4 /17

A12. Sortieren: Quicksort (& Heapsort)

Quicksort: ldee

> Wie Merge-Sort ein Divide-and-Conquer-Verfahren

» Die Sequenz wird nicht wie bei Mergesort nach Positionen
aufgeteilt, sondern nach Werten.

» Hierfiir wird ein Element P gewahlt
(das sogenannte Pivotelement).

» Dann wird so umsortiert, dass P an die endgiiltige Position

kommt, vor P nur Elemente < P stehen, und hinten nur
Elemente > P.

<P |P > P

» Macht man das rekursiv fiir den vorderen und den hinteren
Teil, ist die Sequenz am Ende sortiert.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023

Quicksort

5/ 17

A12. Sortieren: Quicksort (& Heapsort)

Wie wahlt man das Pivot-Element?

Fiir die Korrektheit des Verfahrens ist das egal. (Warum?)

Wir kénnen zum Bsp. folgende Strategien wahlen:
> Naiv: Nimm immer erstes Element

» Median of Three: Verwende Median aus erstem,
mittlerem und letztem Element

» Randomisiert: Wahle zufallig ein Element aus

Quicksort

Gute Pivot-Elemente teilen Sequenz in etwa gleich grosse Bereiche.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023

A12. Sortieren: Quicksort (& Heapsort) Quicksort
Quicksort: Algorithmus
1 def sort(array):
2 sort_aux(array, O, len(array)-1)
3
4 def sort_aux(array, lo, hi):
5 if hi <= lo:
6 return
7 choose_pivot_and_swap_it_to_lo(array, lo, hi)
8 pivot_pos = partition(array, lo, hi)
9 sort_aux(array, lo, pivot_pos - 1)
10 sort_aux(array, pivot_pos + 1, hi)
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 6 /17
A12. Sortieren: Quicksort (& Heapsort) Quicksort
Wie macht man die Umsortierung?
array
lo hi
: @ s Pivot ist an Pos lo.
i i Initialisiere i = lo+ 1, = hi
: @ i nach rechts bis zu Element > Pivot,
i j J nach links bis Element < Pivot
— Falls i < j: Elemente tauschen, i++, j——
|
: @ i nach rechts bis zu Element > Pivot,
o J nach links bis Element < Pivot
T i > j: noch Pivot an Pos j tauschen
|
[2]3]4] 5] 7]l6] - Fertig
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 8 /17

A12. Sortieren: Quicksort (& Heapsort)

Quicksort: Partitionierung

1 def partition(array, lo, hi):
2 pivot = array[lo]
3 i=1lo0o+ 1
4 j =hi
5 while (True):
6 while i < hi and array[i] < pivot:
7 i+=1
8 while array[j] > pivot:
9 j—=1
10 if 1 >= j:
11 break
12
13 array[i], array[j] = arrayl[jl, array[il
14 i, j=4i+1,3j-1
15 array[lo], array[j] = array[jl, arrayl[lo]
16 return j
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023

A12. Sortieren: Quicksort (& Heapsort) Quicksort

Aufgabe

Wie sieht das Array [6, 5, 7, 8, 3] nach einem Aufruf o
von partition fiir den gesamten Bereich 2
(von Position 0 bis 4) aus?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Miarz 2023 10 /

A12. Sortieren: Quicksort (& Heapsort)

Quicksort: Laufzeit |

Best case: Pivot-Element teilt in gleich grosse Bereiche
» O(log, n) rekursive Aufrufe
> jeweils hi-lo Schliisselvergleiche in Partitionierung

» auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

— O(nlogn)

Worst case: Pivot-Element immer kleinstes oder grosstes Element

» insgesamt n-1 (nichttriviale) rekursive Aufrufe fiir Lange

nn—1,...,2.
> jeweils hi-lo Schliisselvergleiche in Partitionierung
— 0O(n?)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023

A12. Sortieren: Quicksort (& Heapsort) Quicksort

Quicksort: Laufzeit Il

Average case:

» Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufillig gewahlt

» O(log n) rekursive Aufrufe
> insgesamt O(nlogn)

> etwa 39% langsamer als best case

Bei randomisierter Pivotwahl tritt worst-case quasi nicht auf.
Quicksort wird daher oft als O(nlog n)-Verfahren betrachtet.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 12/

A12. Sortieren: Quicksort (& Heapsort)

Sortierverfahren

Heapsort

_{

Selectionsort ‘

_{

Insertionsort ‘

—{ Mergesort ‘
Nicht —
_ vergleichsbasierte Minimale
Verfahren Vergleichszahl

_{

Quick Sort ‘

Ausblick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Uberblick und __

16. Marz 2023 14 / 17

A12. Sortieren: Quicksort (& Heapsort) Heapsort
A12.2 Heapsort
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 13 /17
A12. Sortieren: Quicksort (& Heapsort) Heapsort
Heapsort
» Heap: Datenstruktur, die das Finden und Entnehmen des
grossten Elements besonders effizient unterstiitzt
Finden: ©(1), Entnehmen: ©(log n)
» Grundidee analog zu Selectionsort: Setze sukzessive das
grosste Element an das Ende des unsortierten Bereichs.
» Kann den Heap direkt in der Eingabesequenz reprasentieren,
so dass Heapsort nur konstanten zusatzlichen Speicherplatz
bendtigt.
» Die Laufzeit von Heapsort ist leicht {iberlinear.
» Wir besprechen die Details spater, wenn wir Heaps
genauer kennengelernt haben.
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 15 / 17

A12. Sortieren: Quicksort (& Heapsort)

A12.3 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Zusammenfassung

16. Marz 2023 16 / 17

A12. Sortieren: Quicksort (& Heapsort) Zusammenfassung

Zusammenfassung

» Quicksort ist ein Divide-and-Conquer-Verfahren, das die
Elemente relativ zu einem Pivotelement aufteilt.

» Im Worst-case hat Quicksort ein quadratisches
Laufzeitverhalten.

» Im Average-case ist die Laufzeit leicht tiberlinear.

» Bei randomisierter Pivotwahl tritt der Worst-case fast nie auf.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 17 / 17

	Quicksort
	

	Heapsort
	

	Zusammenfassung
	

