
Algorithmen und Datenstrukturen
A12. Sortieren: Quicksort (& Heapsort)

Marcel Lüthi and Gabriele Röger

Universität Basel

16. März 2023

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 1 / 17



Algorithmen und Datenstrukturen
16. März 2023 — A12. Sortieren: Quicksort (& Heapsort)

A12.1 Quicksort

A12.2 Heapsort

A12.3 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 2 / 17



A12. Sortieren: Quicksort (& Heapsort) Quicksort

A12.1 Quicksort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 3 / 17



A12. Sortieren: Quicksort (& Heapsort) Quicksort

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Selectionsort

Insertionsort

Mergesort

Minimale
Vergleichszahl

Quick Sort

Heap Sort

Nicht
vergleichsbasierte

Verfahren

Überblick und
Ausblick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 4 / 17



A12. Sortieren: Quicksort (& Heapsort) Quicksort

Quicksort: Idee

▶ Wie Merge-Sort ein Divide-and-Conquer-Verfahren

▶ Die Sequenz wird nicht wie bei Mergesort nach Positionen
aufgeteilt, sondern nach Werten.

▶ Hierfür wird ein Element P gewählt
(das sogenannte Pivotelement).

▶ Dann wird so umsortiert, dass P an die endgültige Position
kommt, vor P nur Elemente ≤ P stehen, und hinten nur
Elemente ≥ P.

P≤ P ≥ P

▶ Macht man das rekursiv für den vorderen und den hinteren
Teil, ist die Sequenz am Ende sortiert.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 5 / 17



A12. Sortieren: Quicksort (& Heapsort) Quicksort

Quicksort: Algorithmus

1 def sort(array):

2 sort_aux(array, 0, len(array)-1)

3

4 def sort_aux(array, lo, hi):

5 if hi <= lo:

6 return

7 choose_pivot_and_swap_it_to_lo(array, lo, hi)

8 pivot_pos = partition(array, lo, hi)

9 sort_aux(array, lo, pivot_pos - 1)

10 sort_aux(array, pivot_pos + 1, hi)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 6 / 17



A12. Sortieren: Quicksort (& Heapsort) Quicksort

Wie wählt man das Pivot-Element?

Für die Korrektheit des Verfahrens ist das egal. (Warum?)

Wir können zum Bsp. folgende Strategien wählen:

▶ Naiv: Nimm immer erstes Element

▶ Median of Three: Verwende Median aus erstem,
mittlerem und letztem Element

▶ Randomisiert: Wähle zufällig ein Element aus

Gute Pivot-Elemente teilen Sequenz in etwa gleich grosse Bereiche.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 7 / 17



A12. Sortieren: Quicksort (& Heapsort) Quicksort

Wie macht man die Umsortierung?

array

. . . 5

lo

7 4 2 3 6

hi

. . . Pivot ist an Pos lo.

Initialisiere i = lo + 1, j = hi
. . . 5 7

i

4 2 3 6

j

. . . i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 7

i

4 2 3

j

6 . . .. . .
Falls i < j : Elemente tauschen, i++, j−−

. . . 5 3 4

i

2

j

7 6 . . .. . . i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 3 4 2

j

7

i

6 . . .. . .
i ≥ j : noch Pivot an Pos j tauschen

. . . 2 3 4 5

j

7

i

6 . . .. . . Fertig!

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 8 / 17



A12. Sortieren: Quicksort (& Heapsort) Quicksort

Quicksort: Partitionierung

1 def partition(array, lo, hi):

2 pivot = array[lo]

3 i = lo + 1

4 j = hi

5 while (True):

6 while i < hi and array[i] < pivot:

7 i += 1

8 while array[j] > pivot:

9 j -= 1

10 if i >= j:

11 break

12

13 array[i], array[j] = array[j], array[i]

14 i, j = i + 1, j - 1

15 array[lo], array[j] = array[j], array[lo]

16 return j

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 9 / 17



A12. Sortieren: Quicksort (& Heapsort) Quicksort

Aufgabe

Wie sieht das Array [6, 5, 7, 8, 3] nach einem Aufruf
von partition für den gesamten Bereich
(von Position 0 bis 4) aus?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 10 / 17



A12. Sortieren: Quicksort (& Heapsort) Quicksort

Quicksort: Laufzeit I

Best case: Pivot-Element teilt in gleich grosse Bereiche

▶ O(log2 n) rekursive Aufrufe

▶ jeweils hi-lo Schlüsselvergleiche in Partitionierung

▶ auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

→ O(n log n)

Worst case: Pivot-Element immer kleinstes oder grösstes Element

▶ insgesamt n-1 (nichttriviale) rekursive Aufrufe für Länge
n, n − 1, . . . , 2.

▶ jeweils hi-lo Schlüsselvergleiche in Partitionierung

→ Θ(n2)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 11 / 17



A12. Sortieren: Quicksort (& Heapsort) Quicksort

Quicksort: Laufzeit II

Average case:

▶ Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufällig gewählt

▶ O(log n) rekursive Aufrufe

▶ insgesamt O(n log n)

▶ etwa 39% langsamer als best case

Bei randomisierter Pivotwahl tritt worst-case quasi nicht auf.
Quicksort wird daher oft als O(n log n)-Verfahren betrachtet.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 12 / 17



A12. Sortieren: Quicksort (& Heapsort) Heapsort

A12.2 Heapsort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 13 / 17



A12. Sortieren: Quicksort (& Heapsort) Heapsort

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Selectionsort

Insertionsort

Mergesort

Minimale
Vergleichszahl

Quick Sort

Heap Sort

Nicht
vergleichsbasierte

Verfahren

Überblick und
Ausblick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 14 / 17



A12. Sortieren: Quicksort (& Heapsort) Heapsort

Heapsort

▶ Heap: Datenstruktur, die das Finden und Entnehmen des
grössten Elements besonders effizient unterstützt
Finden: Θ(1), Entnehmen: Θ(log n)

▶ Grundidee analog zu Selectionsort: Setze sukzessive das
grösste Element an das Ende des unsortierten Bereichs.

▶ Kann den Heap direkt in der Eingabesequenz repräsentieren,
so dass Heapsort nur konstanten zusätzlichen Speicherplatz
benötigt.

▶ Die Laufzeit von Heapsort ist leicht überlinear.

▶ Wir besprechen die Details später, wenn wir Heaps
genauer kennengelernt haben.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 15 / 17



A12. Sortieren: Quicksort (& Heapsort) Zusammenfassung

A12.3 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 16 / 17



A12. Sortieren: Quicksort (& Heapsort) Zusammenfassung

Zusammenfassung

▶ Quicksort ist ein Divide-and-Conquer-Verfahren, das die
Elemente relativ zu einem Pivotelement aufteilt.

▶ Im Worst-case hat Quicksort ein quadratisches
Laufzeitverhalten.

▶ Im Average-case ist die Laufzeit leicht überlinear.

▶ Bei randomisierter Pivotwahl tritt der Worst-case fast nie auf.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2023 17 / 17


	Quicksort
	

	Heapsort
	

	Zusammenfassung
	


