Algorithmen und Datenstrukturen
A12. Sortieren: Quicksort (& Heapsort)

Marcel Liithi and Gabriele Roger

Universitat Basel

16. Méarz 2023

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

16. Miarz 2023

1/

Algorithmen und Datenstrukturen
16. Marz 2023 — A12. Sortieren: Quicksort (& Heapsort)

A12.1 Quicksort

A12.2 Heapsort

A12.3 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Mirz 2023 2 /17

A12. Sortieren: Quicksort (& Heapsort) Quicksort

A12.1 Quicksort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 16. Miarz 2023 3 /17

A12. Sortieren: Quicksort (& Heapsort)

Sortierverfahren

M. Liithi, G. Réger (Universitit Basel)

Nicht
vergleichsbasierte
Verfahren

—| Selectionsort

—| Insertionsort

—| Mergesort

Minimale

Uberblick und
Ausblick

Vergleichszahl

Algorithmen und Datenstrukturen

—{ Heap Sort

16. Miarz 2023

Quicksort

4/17

A12. Sortieren: Quicksort (& Heapsort) Quicksort

Quicksort: Idee

» Wie Merge-Sort ein Divide-and-Conquer-Verfahren

» Die Sequenz wird nicht wie bei Mergesort nach Positionen
aufgeteilt, sondern nach Werten.

» Hierfiir wird ein Element P gewahlt
(das sogenannte Pivotelement).

» Dann wird so umsortiert, dass P an die endgiiltige Position

kommt, vor P nur Elemente < P stehen, und hinten nur
Elemente > P.

<P |P > P

» Macht man das rekursiv fiir den vorderen und den hinteren
Teil, ist die Sequenz am Ende sortiert.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 5 /17

A12. Sortieren: Quicksort (& Heapsort) Quicksort

Quicksort: Algorithmus

1 def sort(array):

2 sort_aux(array, 0, len(array)-1)

3

4 def sort_aux(array, lo, hi):

5 if hi <= lo:

6 return

7 choose_pivot_and_swap_it_to_lo(array, lo, hi)
8 pivot_pos = partition(array, lo, hi)

9 sort_aux(array, lo, pivot_pos - 1)

10 sort_aux(array, pivot_pos + 1, hi)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Miarz 2023 6 /17

A12. Sortieren: Quicksort (& Heapsort)

Wie wahlt man das Pivot-Element?

Fiir die Korrektheit des Verfahrens ist das egal. (Warum?)

Wir kdnnen zum Bsp. folgende Strategien wahlen:
» Naiv: Nimm immer erstes Element

» Median of Three: Verwende Median aus erstem,
mittlerem und letztem Element

» Randomisiert: Wahle zufillig ein Element aus

Gute Pivot-Elemente teilen Sequenz in etwa gleich grosse Bereiche.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Miarz 2023

7/

Quicksort

A12. Sortieren: Quicksort (& Heapsort) Quicksort

Wie macht man die Umsortierung?

array

@ s Pivot ist an Pos lo.
Initialisiere i =lo 4 1, = hi

@ T i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

@ o Falls i < j: Elemente tauschen, i++, j——
@ T i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

E@ i > j: noch Pivot an Pos j tauschen
@ e Fertig!

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 8 /17

A12. Sortieren: Quicksort (& Heapsort)

Quicksort: Partitionierung

def partition(array, lo, hi):
pivot = array[lo]
i=10 +1
j = hi
while (True):
while i < hi and array[i] < pivot:
i+=1
while array[j] > pivot:
j-=1
if io>= §:
break

array[i], array[j]l = array[j]l, array[i]
i, j=di+1,3-1
array[lo], array[j]l = array[j], arrayl[lo]
return j

M. Liithi, G. Réger

(Universitit Basel) Algorithmen und Datenstrukturen 16. Mirz 2023

Quicksort

9/17

A12. Sortieren: Quicksort (& Heapsort)

Aufgabe

Wie sieht das Array [6, 5, 7, 8, 3] nach einem Aufruf
von partition fiir den gesamten Bereich
(von Position 0 bis 4) aus?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Quicksort

&

16. Marz 2023 10 / 17

A12. Sortieren: Quicksort (& Heapsort)

Quicksort: Laufzeit |

Best case: Pivot-Element teilt in gleich grosse Bereiche
» O(log, n) rekursive Aufrufe
> jeweils hi-lo Schliisselvergleiche in Partitionierung

> auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

— O(nlog n)

Worst case: Pivot-Element immer kleinstes oder grosstes Element

» insgesamt n-1 (nichttriviale) rekursive Aufrufe fiir Lange

nn—1,...,2.
> jeweils hi-lo Schliisselvergleiche in Partitionierung
— O(n?)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 11

Quicksort

17

A12. Sortieren: Quicksort (& Heapsort) Quicksort

Quicksort: Laufzeit Il

Average case:

» Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufillig gewahlt

» O(log n) rekursive Aufrufe
> insgesamt O(nlog n)

> etwa 39% langsamer als best case

Bei randomisierter Pivotwahl tritt worst-case quasi nicht auf.
Quicksort wird daher oft als O(nlog n)-Verfahren betrachtet.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Miarz 2023 12 /17

A12. Sortieren: Quicksort (& Heapsort) Heapsort

A12.2 Heapsort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 16. Marz 2023 13 /17

A12. Sortieren: Quicksort (& Heapsort) Heapsort

-—| Selectionsort |

—| Insertionsort |
—| Mergesort |
Nicht

_ vergleichsbasierte Minimale

Verfahren Vergleichszahl

—| Quick Sort |
Uberblick und __

Ausblick

Sortierverfahren

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 14 /17

A12. Sortieren: Quicksort (& Heapsort)

Heapsort

» Heap: Datenstruktur, die das Finden und Entnehmen des
grossten Elements besonders effizient unterstiitzt
Finden: ©(1), Entnehmen: ©(log n)

» Grundidee analog zu Selectionsort: Setze sukzessive das
grosste Element an das Ende des unsortierten Bereichs.

» Kann den Heap direkt in der Eingabesequenz reprasentieren,
so dass Heapsort nur konstanten zusatzlichen Speicherplatz
bendtigt.

» Die Laufzeit von Heapsort ist leicht liberlinear.

» Wir besprechen die Details spater, wenn wir Heaps
genauer kennengelernt haben.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023

Heapsort

15 /17

A12. Sortieren: Quicksort (& Heapsort) Zusammenfassung

A12.3 Zusammenfassung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 16. Marz 2023 16 / 17

A12. Sortieren: Quicksort (& Heapsort) Zusammenfassung

Zusammenfassung

» Quicksort ist ein Divide-and-Conquer-Verfahren, das die
Elemente relativ zu einem Pivotelement aufteilt.

» Im Worst-case hat Quicksort ein quadratisches
Laufzeitverhalten.

> Im Average-case ist die Laufzeit leicht iiberlinear.

» Bei randomisierter Pivotwahl tritt der Worst-case fast nie auf.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2023 17 /17

	Quicksort
	

	Heapsort
	

	Zusammenfassung
	

