
Algorithmen und Datenstrukturen
A12. Sortieren: Quicksort (& Heapsort)
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Überblick und
Ausblick
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Quicksort: Idee

▶ Wie Merge-Sort ein Divide-and-Conquer-Verfahren

▶ Die Sequenz wird nicht wie bei Mergesort nach Positionen
aufgeteilt, sondern nach Werten.

▶ Hierfür wird ein Element P gewählt
(das sogenannte Pivotelement).

▶ Dann wird so umsortiert, dass P an die endgültige Position
kommt, vor P nur Elemente ≤ P stehen, und hinten nur
Elemente ≥ P.

P≤ P ≥ P

▶ Macht man das rekursiv für den vorderen und den hinteren
Teil, ist die Sequenz am Ende sortiert.
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Quicksort: Algorithmus

1 def sort(array):

2 sort_aux(array, 0, len(array)-1)

3

4 def sort_aux(array, lo, hi):

5 if hi <= lo:

6 return

7 choose_pivot_and_swap_it_to_lo(array, lo, hi)

8 pivot_pos = partition(array, lo, hi)

9 sort_aux(array, lo, pivot_pos - 1)

10 sort_aux(array, pivot_pos + 1, hi)
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Wie wählt man das Pivot-Element?

Für die Korrektheit des Verfahrens ist das egal. (Warum?)

Wir können zum Bsp. folgende Strategien wählen:

▶ Naiv: Nimm immer erstes Element

▶ Median of Three: Verwende Median aus erstem,
mittlerem und letztem Element

▶ Randomisiert: Wähle zufällig ein Element aus

Gute Pivot-Elemente teilen Sequenz in etwa gleich grosse Bereiche.
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Wie macht man die Umsortierung?

array
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7 4 2 3 6

hi

. . . Pivot ist an Pos lo.

Initialisiere i = lo + 1, j = hi
. . . 5 7

i

4 2 3 6

j

. . . i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 7
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6 . . .. . .
Falls i < j : Elemente tauschen, i++, j−−
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7 6 . . .. . . i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 3 4 2

j

7

i

6 . . .. . .
i ≥ j : noch Pivot an Pos j tauschen

. . . 2 3 4 5

j

7
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6 . . .. . . Fertig!
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Quicksort: Partitionierung

1 def partition(array, lo, hi):

2 pivot = array[lo]

3 i = lo + 1

4 j = hi

5 while (True):

6 while i < hi and array[i] < pivot:

7 i += 1

8 while array[j] > pivot:

9 j -= 1

10 if i >= j:

11 break

12

13 array[i], array[j] = array[j], array[i]

14 i, j = i + 1, j - 1

15 array[lo], array[j] = array[j], array[lo]

16 return j
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Aufgabe

Wie sieht das Array [6, 5, 7, 8, 3] nach einem Aufruf
von partition für den gesamten Bereich
(von Position 0 bis 4) aus?
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Quicksort: Laufzeit I

Best case: Pivot-Element teilt in gleich grosse Bereiche

▶ O(log2 n) rekursive Aufrufe

▶ jeweils hi-lo Schlüsselvergleiche in Partitionierung

▶ auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

→ O(n log n)

Worst case: Pivot-Element immer kleinstes oder grösstes Element

▶ insgesamt n-1 (nichttriviale) rekursive Aufrufe für Länge
n, n − 1, . . . , 2.

▶ jeweils hi-lo Schlüsselvergleiche in Partitionierung

→ Θ(n2)
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Quicksort: Laufzeit II

Average case:

▶ Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufällig gewählt

▶ O(log n) rekursive Aufrufe

▶ insgesamt O(n log n)

▶ etwa 39% langsamer als best case

Bei randomisierter Pivotwahl tritt worst-case quasi nicht auf.
Quicksort wird daher oft als O(n log n)-Verfahren betrachtet.
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A12.2 Heapsort
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Heapsort

▶ Heap: Datenstruktur, die das Finden und Entnehmen des
grössten Elements besonders effizient unterstützt
Finden: Θ(1), Entnehmen: Θ(log n)

▶ Grundidee analog zu Selectionsort: Setze sukzessive das
grösste Element an das Ende des unsortierten Bereichs.

▶ Kann den Heap direkt in der Eingabesequenz repräsentieren,
so dass Heapsort nur konstanten zusätzlichen Speicherplatz
benötigt.

▶ Die Laufzeit von Heapsort ist leicht überlinear.

▶ Wir besprechen die Details später, wenn wir Heaps
genauer kennengelernt haben.
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Zusammenfassung

▶ Quicksort ist ein Divide-and-Conquer-Verfahren, das die
Elemente relativ zu einem Pivotelement aufteilt.

▶ Im Worst-case hat Quicksort ein quadratisches
Laufzeitverhalten.

▶ Im Average-case ist die Laufzeit leicht überlinear.

▶ Bei randomisierter Pivotwahl tritt der Worst-case fast nie auf.
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