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A12.1 Quicksort
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Quicksort: Idee

» Wie Merge-Sort ein Divide-and-Conquer-Verfahren

» Die Sequenz wird nicht wie bei Mergesort nach Positionen
aufgeteilt, sondern nach Werten.

» Hierfiir wird ein Element P gewahlt
(das sogenannte Pivotelement).

» Dann wird so umsortiert, dass P an die endgiiltige Position

kommt, vor P nur Elemente < P stehen, und hinten nur
Elemente > P.

<P |P > P

» Macht man das rekursiv fiir den vorderen und den hinteren
Teil, ist die Sequenz am Ende sortiert.
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Quicksort: Algorithmus

1 def sort(array):

2 sort_aux(array, 0, len(array)-1)

3

4 def sort_aux(array, lo, hi):

5 if hi <= lo:

6 return

7 choose_pivot_and_swap_it_to_lo(array, lo, hi)
8 pivot_pos = partition(array, lo, hi)

9 sort_aux(array, lo, pivot_pos - 1)

10 sort_aux(array, pivot_pos + 1, hi)
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Wie wahlt man das Pivot-Element?

Fiir die Korrektheit des Verfahrens ist das egal. (Warum?)

Wir kdnnen zum Bsp. folgende Strategien wahlen:
» Naiv: Nimm immer erstes Element

» Median of Three: Verwende Median aus erstem,
mittlerem und letztem Element

» Randomisiert: Wahle zufillig ein Element aus

Gute Pivot-Elemente teilen Sequenz in etwa gleich grosse Bereiche.
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Wie macht man die Umsortierung?

array

@ s Pivot ist an Pos lo.
Initialisiere i =lo 4 1, = hi

@ T i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

@ o Falls i < j: Elemente tauschen, i++, j——
@ T i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

E@ i > j: noch Pivot an Pos j tauschen
@ e Fertig!
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Quicksort: Partitionierung

def partition(array, lo, hi):
pivot = array[lo]
i=10 +1
j = hi
while (True):
while i < hi and array[i] < pivot:
i+=1
while array[j] > pivot:
j-=1
if io>= §:
break

array[i], array[j]l = array[j]l, array[i]
i, j=di+1,3-1
array[lo], array[j]l = array[j], arrayl[lo]
return j
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Aufgabe

Wie sieht das Array [6, 5, 7, 8, 3] nach einem Aufruf
von partition fiir den gesamten Bereich
(von Position 0 bis 4) aus?
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Quicksort: Laufzeit |

Best case: Pivot-Element teilt in gleich grosse Bereiche
» O(log, n) rekursive Aufrufe
> jeweils hi-lo Schliisselvergleiche in Partitionierung

> auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

— O(nlog n)

Worst case: Pivot-Element immer kleinstes oder grosstes Element

» insgesamt n-1 (nichttriviale) rekursive Aufrufe fiir Lange

nn—1,...,2.
> jeweils hi-lo Schliisselvergleiche in Partitionierung
— O(n?)
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Quicksort: Laufzeit Il

Average case:

» Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufillig gewahlt

» O(log n) rekursive Aufrufe
> insgesamt O(nlog n)

> etwa 39% langsamer als best case

Bei randomisierter Pivotwahl tritt worst-case quasi nicht auf.
Quicksort wird daher oft als O(nlog n)-Verfahren betrachtet.
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A12.2 Heapsort
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Heapsort

» Heap: Datenstruktur, die das Finden und Entnehmen des
grossten Elements besonders effizient unterstiitzt
Finden: ©(1), Entnehmen: ©(log n)

» Grundidee analog zu Selectionsort: Setze sukzessive das
grosste Element an das Ende des unsortierten Bereichs.

» Kann den Heap direkt in der Eingabesequenz reprasentieren,
so dass Heapsort nur konstanten zusatzlichen Speicherplatz
bendtigt.

» Die Laufzeit von Heapsort ist leicht liberlinear.

» Wir besprechen die Details spater, wenn wir Heaps
genauer kennengelernt haben.
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A12.3 Zusammenfassung
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Zusammenfassung

» Quicksort ist ein Divide-and-Conquer-Verfahren, das die
Elemente relativ zu einem Pivotelement aufteilt.

» Im Worst-case hat Quicksort ein quadratisches
Laufzeitverhalten.

> Im Average-case ist die Laufzeit leicht iiberlinear.

» Bei randomisierter Pivotwahl tritt der Worst-case fast nie auf.
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