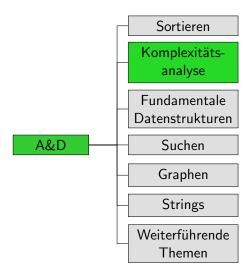
Algorithmen und Datenstrukturen A9. Laufzeitanalyse: Landau-Symbole

Marcel Lüthi and Gabriele Röger

Universität Basel

15. März 2023

Inhalt dieser Veranstaltung



Landau-Notation

"Die Laufzeit von Mergesort wächst genauso schnell wie $n \log_2 n$."

"Die Laufzeit von Mergesort wächst genauso schnell wie $n \log_2 n$."

$\mathsf{Theorem}$

Mergesort hat leicht überlineare Laufzeit, d.h. es gibt Konstanten $c, c', n_0 > 0$, so dass für alle $n \ge n_0$: $cn \log_2 n \le T(n) \le c' n \log_2 n$.

"Die Laufzeit von Mergesort wächst genauso schnell wie $n \log_2 n$."

$\mathsf{Theorem}$

Mergesort hat leicht überlineare Laufzeit, d.h. es gibt Konstanten c, c', $n_0 > 0$, so dass für alle $n \ge n_0$: $cn \log_2 n \le T(n) \le c' n \log_2 n$.

• Wir haben Terme niedrigerer Ordnung (Konstanten und n) in der Abschätzung ignoriert bzw. verschwinden lassen.

"Die Laufzeit von Mergesort wächst genauso schnell wie $n \log_2 n$."

$\mathsf{Theorem}$

Mergesort hat leicht überlineare Laufzeit, d.h. es gibt Konstanten $c, c', n_0 > 0$, so dass für alle $n \ge n_0$: $cn \log_2 n \le T(n) \le c' n \log_2 n$.

- Wir haben Terme niedrigerer Ordnung (Konstanten und *n*) in der Abschätzung ignoriert bzw. verschwinden lassen.
- Wir haben uns nicht für die genauen Werte der Konstanten interessiert, es reicht, wenn irgendwelche passenden Konstanten existieren.

"Die Laufzeit von Mergesort wächst genauso schnell wie $n \log_2 n$."

$\mathsf{Theorem}$

Mergesort hat leicht überlineare Laufzeit, d.h. es gibt Konstanten c, c', $n_0 > 0$, so dass für alle $n \ge n_0$: $cn \log_2 n \le T(n) \le c' n \log_2 n$.

- Wir haben Terme niedrigerer Ordnung (Konstanten und *n*) in der Abschätzung ignoriert bzw. verschwinden lassen.
- Wir haben uns nicht für die genauen Werte der Konstanten interessiert, es reicht, wenn irgendwelche passenden Konstanten existieren.
- Die Laufzeit f
 ür kleine n ist nicht so wichtig.

Mehr bisherige Ergebnisse

$\mathsf{Theorem}$

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten $c, c', n_0 > 0$, so dass für alle $n > n_0$: cn < T(n) < c'n.

$\mathsf{Theorem}$

Mergesort hat leicht überlineare Laufzeit, d.h. es gibt Konstanten $c, c', n_0 > 0$, so dass für alle $n \ge n_0$: $c n \log_2 n \le T(n) \le c' n \log_2 n$.

$\mathsf{Theorem}$

Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten $c > 0, c' > 0, n_0 > 0$, so dass für $n \ge n_0$: $c n^2 \le T(n) \le c' n^2$.

Mehr bisherige Ergebnisse

Theorem

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten $c, c', n_0 > 0$, so dass für alle $n \ge n_0$: $cn \le T(n) \le c'n$.

Theorem

Mergesort hat leicht überlineare Laufzeit, d.h. es gibt Konstanten $c, c', n_0 > 0$, so dass für alle $n \ge n_0$: $c n \log_2 n \le T(n) \le c' n \log_2 n$.

$\mathsf{Theorem}$

Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten $c > 0, c' > 0, n_0 > 0$, so dass für $n \ge n_0$: $cn^2 \le T(n) \le c'n^2$.

Können wir das nicht irgendwie kompakter aufschreiben?

Edmund Landau

- deutscher Mathematiker (1877–1938)
- analytische Zahlentheorie
- kein Freund angewandter Mathematik

Edmund Landau

Edmund Landau

- deutscher Mathematiker (1877-1938)
- analytische Zahlentheorie
- kein Freund angewandter Mathematik

International: Bachmann-Landau-Notation auch nach Paul Gustav Heinrich Bachmann (deutscher Mathematiker)

Landau-Symbol Theta

Definition

Für eine Funktion $g: \mathbb{N} \to \mathbb{R}$ ist $\Theta(g)$ die Menge aller Funktionen $f: \mathbb{N} \to \mathbb{R}$, die genauso schnell wachsen wie g:

$$\Theta(g) = \{ f \mid \exists c > 0 \ \exists c' > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : \\ c \cdot g(n) \le f(n) \le c' \cdot g(n) \}$$

Landau-Symbol Theta

Definition

Für eine Funktion $g: \mathbb{N} \to \mathbb{R}$ ist $\Theta(g)$ die Menge aller Funktionen $f: \mathbb{N} \to \mathbb{R}$, die genauso schnell wachsen wie g:

$$\Theta(g) = \{ f \mid \exists c > 0 \ \exists c' > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : \\ c \cdot g(n) \le f(n) \le c' \cdot g(n) \}$$

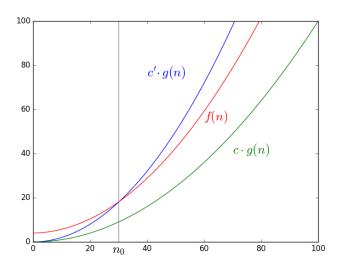
"Die Laufzeit von Mergesort ist in $\Theta(n \log_2 n)$."

oder auch

"Die Laufzeit von Mergesort ist $\Theta(n \log_2 n)$."

Landau-Symbol Theta: Illustration

$$f \in \Theta(g)$$



Jupyter-Notebook (mit Aufgaben)

Jupyter-Notebook: landau.ipynb

■ "f wächst nicht wesentlich schneller als g"

$$O(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

■ "f wächst nicht wesentlich schneller als g"

$$O(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

■ O für "Ordnung" der Funktion

■ "f wächst nicht wesentlich schneller als g"

$$O(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

- O für "Ordnung" der Funktion
- "f wächst nicht wesentlich langsamer als g"

$$\Omega(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \geq n_0 : c \cdot g(n) \leq f(n) \}$$

■ "f wächst nicht wesentlich schneller als g"

$$O(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

- O für "Ordnung" der Funktion
- "f wächst nicht wesentlich langsamer als g"

$$\Omega(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n) \}$$

■ Es gilt $\Theta(g) = O(g) \cap \Omega(g)$.

■ "f wächst nicht wesentlich schneller als g"

$$O(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

- O für "Ordnung" der Funktion
- "f wächst nicht wesentlich langsamer als g"

$$\Omega(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n) \}$$

- Es gilt $\Theta(g) = O(g) \cap \Omega(g)$.
- Es gilt $f \in \Omega(g)$ gdw. $g \in O(f)$.

■ "f wächst nicht wesentlich schneller als g"

$$O(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

- O für "Ordnung" der Funktion
- "f wächst nicht wesentlich langsamer als g"

$$\Omega(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n) \}$$

- Es gilt $\Theta(g) = O(g) \cap \Omega(g)$.
- Es gilt $f \in \Omega(g)$ gdw. $g \in O(f)$.
- In der Informatik interessieren wir uns oft nur für die Begrenzung des Laufzeitwachstums nach oben: O statt Θ

■ "f wächst nicht wesentlich schneller als g"

$$O(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

- O für "Ordnung" der Funktion
- "f wächst nicht wesentlich langsamer als g"

$$\Omega(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n) \}$$

- Es gilt $\Theta(g) = O(g) \cap \Omega(g)$.
- Es gilt $f \in \Omega(g)$ gdw. $g \in O(f)$.
- In der Informatik interessieren wir uns oft nur für die Begrenzung des Laufzeitwachstums nach oben: O statt Θ

Aussprache: Θ : Theta, Ω : Omega, O: Oh

Seltener benötigte Landau-Symbole

■ "f wächst langsamer als g"

$$o(g) = \{ f \mid \forall c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

Seltener benötigte Landau-Symbole

■ "f wächst langsamer als g"

$$o(g) = \{ f \mid \forall c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

■ "f wächst schneller als g"

$$\omega(g) = \{ f \mid \forall c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n) \}$$

Seltener benötigte Landau-Symbole

■ "f wächst langsamer als g"

$$o(g) = \{ f \mid \forall c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

■ "f wächst schneller als g"

$$\omega(g) = \{ f \mid \forall c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n) \}$$

Aussprache: ω : kleines Omega

Interessante Funktionsklassen

In aufsteigender Ordnung (abgesehen von allgemeinen n^k):

g	Wachstum
1	konstant
log n	logarithmisch
n	linear
$n \log n$	leicht überlinear
n^2	quadratisch
n^3	kubisch
n^k	polynomiell (Konstante k)
2 ⁿ	exponentiell

Landau-Notation 0000000000

Folgen

Alternative Big O notation:

$$O(1) = O(yeah)$$

$$O(log n) = O(nice)$$

$$O(n) = O(ok)$$

$$O(n^2) = O(my)$$

$$O(2^n) = O(no)$$

$$O(n!) = O(mg!)$$

10:10 - 6. Apr. 2019

6.302 Retweets 15.739 "Gefällt mir"-Angaben

110 ↑ 6,3 Tsd. 16 Tsd. ✓

Rechenregeln

Beispiele ⊖

Bei der Analyse interessiert nur der Term höchster Ordnung
 (= am schnellsten wachsender Summand) einer Funktion.

Beispiele Θ

- Bei der Analyse interessiert nur der Term höchster Ordnung
 (= am schnellsten wachsender Summand) einer Funktion.
- Beispiele

$$f_1(n) = 5n^2 + 3n - 9$$

$$f_2(n) = 3n \log_2 n + 2n^2$$

$$f_3(n) = 9n \log_2 n + n + 17$$

$$f_4(n) = 8$$

Beispiele Θ

- Bei der Analyse interessiert nur der Term höchster Ordnung
 (= am schnellsten wachsender Summand) einer Funktion.
- Beispiele

$$f_1(n) = 5n^2 + 3n - 9 \in \Theta(n^2)$$

$$f_2(n) = 3n\log_2 n + 2n^2$$

$$f_3(n) = 9n \log_2 n + n + 17$$

$$f_4(n) = 8$$

Beispiele Θ

- Bei der Analyse interessiert nur der Term höchster Ordnung
 (= am schnellsten wachsender Summand) einer Funktion.
- Beispiele

$$f_1(n) = 5n^2 + 3n - 9 \in \Theta(n^2)$$

$$f_2(n) = 3n \log_2 n + 2n^2 \in \Theta(n^2)$$

$$f_3(n) = 9n \log_2 n + n + 17$$

$$f_4(n) = 8$$

Beispiele Θ

- Bei der Analyse interessiert nur der Term höchster Ordnung
 (= am schnellsten wachsender Summand) einer Funktion.
- Beispiele

$$f_1(n) = 5n^2 + 3n - 9 \in \Theta(n^2)$$

•
$$f_2(n) = 3n \log_2 n + 2n^2 \in \Theta(n^2)$$

•
$$f_3(n) = 9n \log_2 n + n + 17 \in \Theta(n \log n)$$

$$f_4(n) = 8$$

Beispiele Θ

- Bei der Analyse interessiert nur der Term höchster Ordnung
 (= am schnellsten wachsender Summand) einer Funktion.
- Beispiele

$$f_1(n) = 5n^2 + 3n - 9 \in \Theta(n^2)$$

$$f_2(n) = 3n \log_2 n + 2n^2 \in \Theta(n^2)$$

•
$$f_3(n) = 9n \log_2 n + n + 17 \in \Theta(n \log n)$$

■
$$f_4(n) = 8 \in \Theta(1)$$

Beispiele Gross-O

Bei der Analyse interessiert nur der Term höchster Ordnung
 (= am schnellsten wachsender Summand) einer Funktion.

- Bei der Analyse interessiert nur der Term höchster Ordnung
 (= am schnellsten wachsender Summand) einer Funktion.
- Beispiele

$$f_1(n) = 8n^2 - 3n - 9$$

$$f_2(n) = n^3 - 3n \log_2 n$$

$$f_3(n) = 3n \log_2 n + 1000n + 10^{200}$$

- Bei der Analyse interessiert nur der Term höchster Ordnung
 (= am schnellsten wachsender Summand) einer Funktion.
- Beispiele

$$f_1(n) = 8n^2 - 3n - 9 \in O(n^2)$$

$$f_2(n) = n^3 - 3n \log_2 n$$

$$f_3(n) = 3n \log_2 n + 1000n + 10^{200}$$

- Bei der Analyse interessiert nur der Term höchster Ordnung
 (= am schnellsten wachsender Summand) einer Funktion.
- Beispiele

$$f_1(n) = 8n^2 - 3n - 9 \in O(n^2)$$

$$f_2(n) = n^3 - 3n \log_2 n \in O(n^3)$$

$$f_3(n) = 3n\log_2 n + 1000n + 10^{200}$$

- Bei der Analyse interessiert nur der Term höchster Ordnung (= am schnellsten wachsender Summand) einer Funktion.
- Beispiele

$$f_1(n) = 8n^2 - 3n - 9 \in O(n^2)$$

$$f_2(n) = n^3 - 3n \log_2 n \in O(n^3)$$

$$f_3(n) = 3n \log_2 n + 1000n + 10^{200} \in O(n \log n)$$

- Bei der Analyse interessiert nur der Term höchster Ordnung
 (= am schnellsten wachsender Summand) einer Funktion.
- Beispiele

$$f_1(n) = 8n^2 - 3n - 9 \in O(n^2)$$

$$f_2(n) = n^3 - 3n \log_2 n \in O(n^3)$$

$$f_3(n) = 3n \log_2 n + 1000n + 10^{200} \in O(n \log n)$$

■ Warum ist das so?

Zusammenhänge

Es gilt:

■ $O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O(n^k) \subset O(2^n)$ (für $k \ge 2$)

Zusammenhänge

Es gilt:

- $O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O(n^k) \subset O(2^n)$ (für $k \ge 2$)
- $O(n^{k_1}) \subset O(n^{k_2})$ für $k_1 < k_2$ z.B. $O(n^2) \subset O(n^3)$

Rechenregeln

■ Produkt

$$f_1 \in O(g_1) \text{ und } f_2 \in O(g_2) \Rightarrow f_1 f_2 \in O(g_1 g_2)$$

Rechenregeln

■ Produkt

$$f_1 \in O(g_1)$$
 und $f_2 \in O(g_2) \Rightarrow f_1 f_2 \in O(g_1 g_2)$

Summe

$$f_1 \in O(g_1) \text{ und } f_2 \in O(g_2) \Rightarrow f_1 + f_2 \in O(g_1 + g_2)$$

Rechenregeln

■ Produkt

$$f_1 \in O(g_1)$$
 und $f_2 \in O(g_2) \Rightarrow f_1 f_2 \in O(g_1 g_2)$

Summe

$$f_1 \in O(g_1) \text{ und } f_2 \in O(g_2) \Rightarrow f_1 + f_2 \in O(g_1 + g_2)$$

■ Multiplikation mit Konstante

$$k > 0$$
 und $f \in O(g) \Rightarrow kf \in O(g)$

$$k > 0 \Rightarrow O(kg) = O(g)$$

Grund für Beschränkung auf Term höchster Ordnung

Beispiel: $5n^3 + 2n \in O(n^3)$

- Wegen Regel bzgl. Multiplikation mit Konstante:
 - $5n^3 \in O(n^3)$
 - \blacksquare $2n \in O(n)$
- Wegen $O(n) \subset O(n^3)$ und $2n \in O(n)$:
 - \blacksquare $2n \in O(n^3)$
- Wegen Summenregel:
 - $5n^3 + 2n \in O(n^3 + n^3)$
- Mit Multiplikation mit Konstante (bei Klasse):
 - $5n^3 + 2n \in O(n^3)$

Zusammenfassung

Zusammenfassung

- Mit Landau-Symbolen definiert man Klassen von Funktionen, die nicht schneller/nicht langsamer/...wachsen als eine Funktion g.
 - O(g): Wachstum nicht schneller als g
 - $\Theta(g)$: Wachstum im Wesentlichen wie g