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A4. Sortieren |l: Mergesort

Mergesort: Idee

» Beobachtung: zwei bereits sortierte Sequenzen lassen sich
leicht zu einer sortierten Sequenz vereinen.

> Sequenzen mit einem oder keinem Element sind sortiert.

> |dee fiir langere Sequenzen:

> Teile Eingabesequenz in zwei etwa gleich grosse Teilbereiche
» Rekursiver Aufruf fiir beide Teilbereiche
> Fiige nun sortierte Teilbereiche zusammen.

» Teile-und-Herrsche-Ansatz (divide and conquer)
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A4. Sortieren Il: Mergesort

Mergesort: Illustration
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(Detaillierte Animation in Bildschirm-Version der Folien)
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A4.2 Merge-Schritt
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Verbinden der Teillésungen

» Indizes lo < mid < hi

» Annahme: array|[lo] bis array[mid] und
array[mid+1] bis array[hi] sind bereits sortiert

» Ziel: array[lo] bis arrayl[hi] ist sortiert

P |dee: gehe parallel von vorne nach hinten durch beide
Teilbereiche und sammle das jeweils kleinere Element auf

» Verwendet zusatzlichen Speicher fiir aufgesammelte Werte
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A4. Sortieren |l: Mergesort Merge-Schritt

Verbinden der Teillésungen: Beispiel

Array tmp hat gleiche Grosse wie Eingabearray.

Initialisierung: i :==lo, j:=mid + 1, k :=lo
a tmp
loi  mid J hi
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Verbinden der Teillosungen: Algorithmus

Merge-Schritt

1 def merge(array, tmp, lo, mid, hi):

2 i=1lo

3 j =mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,h%
5 if j > hi or (i <= mid and array[i] <= array[jl):
6 tmp[k] = arrayl[il

7 i+=1

8 else:

9 tmp[k] = array[j]

10 j =1

11 for k in range(lo, hi + 1): # k = lo,...,hs
12 array[k] = tmp[k]

Auch korrekt fiir lo = mid = hi
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Jupyter-Notebook

@
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Jupyter

o

Jupyter-Notebook: merge_sort.ipynb
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A4.3 Top-Down-Mergesort
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A4. Sortieren |l: Mergesort Top-Down-Mergesort

Mergesort: Algorithmus

rekursive Top-Down-Version

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - 1lo) // 2

1
2

3

4

5 def sort_aux(array, tmp, 1lo, hi):
6

7

8

9 # //: Division mit Abrunden

A4. Sortieren Il: Mergesort Top-Down-Mergesort

Mogliche Verbesserungen

» Auf kurzen Sequenzen ist Insertionsort schneller als Mergesort

— verwende Insertionsort wenn hi - lo klein
» Breche Merge-Schritt direkt ab, falls Positionen lo bis hi

bereits vollstandig sortiert

if array[mid] <= array[mid + 1]:
return

> Kopieren von tmp-Ergebnis in merge kostet Zeit

— tausche Rolle von array und tmp

bei jedem rekursiven Aufruf
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10 sort_aux(array, tmp, lo, mid)

11 sort_aux(array, tmp, mid + 1, hi)

12 merge(array, tmp, lo, mid, hi)
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Merge-Schritt: Korrektheit

» Invariante: Am Ende jeder Schleifeniteration ist
» tmp[k] < array[m] fiir alle / < m < mid, und
» tmp[k] < array([n] fiir alle j < n < hi.

» tmp wird von vorne nach hinten beschrieben.

» Nach letzter Schleifeniteration gilt fiir alle lo < r < s < hi,
dass tmp [r] <tmp[s] (= Bereich ist sortiert).
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Mergesort: Korrektheit

sort_aux:

» Induktionsbeweis iliber Bereichslange hi — lo
(immer 1 kleiner als Anzahl Felder im Bereich)

Basis hi — lo = —1: leerer Bereich ist sortiert.
Basis hi — lo = 0: Bereich mit nur einem Element ist sortiert.

Induktionshypothese: Mergesort ist korrekt fiir alle hi —lo < m

vV VvyVYyy

Induktionsschritt (m — 1 — m):

Mergesort macht zwei rekursive Aufrufe mit hi —lo < [m/2],
danach ist die Eingabe jeweils zwischen lo und mid und
zwischen mid + 1 und hi sortiert (It. Ind.-hyp).

Wir wissen bereits, dass der Merge-Schritt korrekt ist, also ist
am Ende der gesamte Bereich zwischen lo und hi sortiert.
Mergesort: Ruft sort_aux fiir gesamten Bereich auf,
daher ist am Ende die gesamte Eingabe sortiert.
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Mergesort: Eigenschaften (slido)

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - 1o) // 2

1
2

3

4

5 def sort_aux(array, tmp, lo, hi):
6

7

8

9 # //: Division mit Abrunden

10 sort_aux(array, tmp, lo, mid)
11 sort_aux(array, tmp, mid + 1, hi)
12 merge(array, tmp, lo, mid, hi)

Welche der folgenden Eigenschaften hat Mergesort?
In-place? Adaptiv? Stabil?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Marz 2023 17 / 23

A4. Sortieren Il: Mergesort Top-Down-Mergesort

Mergesort: Eigenschaften

» nicht in-place: verwendet zusatzlichen Speicherplatz fiir tmp
und fiir Aufrufstapel (call stack)

» Zeitbedarf: nicht adaptiv (ausser mit
Mergeabbruch-Verbesserung)
genauere Analyse: Kapitel A8

> stabil: merge praferiert array[i],
wenn array[i] gleich array[j].
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A4.4 Bottom-Up-Mergesort
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Bottom-Up-Version

lo=0 lo=2 lo=4 lo=16
mid =0 mid = 2 mid=4 mid =06
hi=1 hi=3 hi=5 hi=16
lo=0 lo=4
mid =1 mid =5
hi=3 hi=16
lo=20
mid = 3
hi = 6
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Bottom-Up-Mergesort: Algorithm

iterative Bottom-Up-Version

1 def sort(array):

2 n = len(array)

3 tmp = [0] * n

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge(array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2
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A4.5 Zusammenfassung
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A4. Sortieren Il: Mergesort Zusammenfassung

Zusammenfassung

> Mergesort ist ein Teile-und-Herrsche-Verfahren, das den zu
sortierenden Bereich in zwei etwa gleich grosse Bereiche teilt.

» Der Merge-Schritt fiihrt zwei bereits sortierte Teilbereiche
zusammen.

> Mergesort ist stabil, arbeitet aber nicht in-place.

v

Die Top-Down-Variante ist ein rekursives Verfahren.

» Die Bottom-Up-Variante ist ein iteratives Verfahren.
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