Algorithmen und Datenstrukturen
A4. Sortieren II: Mergesort

Marcel Liithi and Gabriele Roger
Universitdt Basel

23. Februar/8. Marz 2023

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Marz 2023 1/23

Algorithmen und Datenstrukturen
23. Februar/8. Marz 2023 — A4. Sortieren |I: Mergesort

A4.1 Mergesort

A4.2 Merge-Schritt

A4.3 Top-Down-Mergesort
A4 .4 Bottom-Up-Mergesort

A4.5 Zusammenfassung

A4. Sortieren II: Mergesort Mergesort

A4.1 Mergesort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Mirz 2023 3 /23

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Marz 2023 2 /23
A4. Sortieren II: Mergesort Mergesort
Sortierverfahren
—| Insertionsort |
Nicht —
vergleichsbasierte Mln.lmale
Wil Vergleichszahl
—| Quick Sort |
= : —| Heap Sort |
Uberblick und
Ausblick
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Mirz 2023 4 /23

A4. Sortieren |l: Mergesort

Mergesort: Idee

» Beobachtung: zwei bereits sortierte Sequenzen lassen sich
leicht zu einer sortierten Sequenz vereinen.

> Sequenzen mit einem oder keinem Element sind sortiert.

> |dee fiir langere Sequenzen:

> Teile Eingabesequenz in zwei etwa gleich grosse Teilbereiche
» Rekursiver Aufruf fiir beide Teilbereiche
> Fiige nun sortierte Teilbereiche zusammen.

» Teile-und-Herrsche-Ansatz (divide and conquer)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Marz 2023

Mergesort

5/

23

A4. Sortieren Il: Mergesort

Mergesort: Illustration

7 3 2 9 7 1 4 5

[Gl |
2][]

By

N
e}
~
—
~
o1

N
e}
~
—
~
o1

2 3 7 9

=]

[=]

N
(6]

1 2 3 4 5 7 7 9

(Detaillierte Animation in Bildschirm-Version der Folien)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

23. Februar/8. Miarz 2023 6/

Mergesort

23

A4. Sortieren Il: Mergesort

A4.2 Merge-Schritt

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Marz 2023

7/

Merge-Schritt

23

A4. Sortieren Il: Mergesort

Verbinden der Teillésungen

» Indizes lo < mid < hi

» Annahme: array|[lo] bis array[mid] und
array[mid+1] bis array[hi] sind bereits sortiert

» Ziel: array[lo] bis arrayl[hi] ist sortiert

P |dee: gehe parallel von vorne nach hinten durch beide
Teilbereiche und sammle das jeweils kleinere Element auf

» Verwendet zusatzlichen Speicher fiir aufgesammelte Werte

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

23. Februar/8. Marz 2023 8/

Merge-Schritt

A4. Sortieren |l: Mergesort Merge-Schritt

Verbinden der Teillésungen: Beispiel

Array tmp hat gleiche Grosse wie Eingabearray.

Initialisierung: i :==lo, j:=mid + 1, k :=lo
a tmp
loi mid J hi

-ﬁgmmmm
BT
AT

[2]4]5]4] 7]

lo i mid J hi

[2]4]5]4] 7]

lo mid,i j hi

[2]4]5]4] 7]

alil<a[j] = tmp[k] = ali

alil<a[j] = tmp[k] = al[i

lo mid,i hi,j k a[jl<ali] = tmplk] = a[j]
| o 2lafa]
lo mid i hij k afi]<al[j] = tmpl[k] = ali]

mid i hi i>mid = tmp[k] = alj]

lo

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 23. Februar/8. Marz 2023 9 /23

A4. Sortieren Il: Mergesort

Verbinden der Teillosungen: Algorithmus

Merge-Schritt

1 def merge(array, tmp, lo, mid, hi):

2 i=1lo

3 j =mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,h%
5 if j > hi or (i <= mid and array[i] <= array[jl):
6 tmp[k] = arrayl[il

7 i+=1

8 else:

9 tmp[k] = array[j]

10 j =1

11 for k in range(lo, hi + 1): # k = lo,...,hs
12 array[k] = tmp[k]

Auch korrekt fiir lo = mid = hi

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

23. Februar/8. Marz 2023 10 / 23

A4. Sortieren Il: Mergesort Merge-Schritt

Jupyter-Notebook

@
VR
Jupyter

o

Jupyter-Notebook: merge_sort.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Mirz 2023 11 /23

A4. Sortieren Il: Mergesort

A4.3 Top-Down-Mergesort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Top-Down-Mergesort

23. Februar/8. Marz 2023 12 / 23

A4. Sortieren |l: Mergesort Top-Down-Mergesort

Mergesort: Algorithmus

rekursive Top-Down-Version

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - 1lo) // 2

1
2

3

4

5 def sort_aux(array, tmp, 1lo, hi):
6

7

8

9 # //: Division mit Abrunden

A4. Sortieren Il: Mergesort Top-Down-Mergesort

Mogliche Verbesserungen

» Auf kurzen Sequenzen ist Insertionsort schneller als Mergesort

— verwende Insertionsort wenn hi - lo klein
» Breche Merge-Schritt direkt ab, falls Positionen lo bis hi

bereits vollstandig sortiert

if array[mid] <= array[mid + 1]:
return

> Kopieren von tmp-Ergebnis in merge kostet Zeit

— tausche Rolle von array und tmp

bei jedem rekursiven Aufruf

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Marz 2023 14 / 23

10 sort_aux(array, tmp, lo, mid)

11 sort_aux(array, tmp, mid + 1, hi)

12 merge(array, tmp, lo, mid, hi)
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Marz 2023 13 /23
A4. Sortieren Il: Mergesort Top-Down-Mergesort

Merge-Schritt: Korrektheit

» Invariante: Am Ende jeder Schleifeniteration ist
» tmp[k] < array[m] fiir alle / < m < mid, und
» tmp[k] < array([n] fiir alle j < n < hi.

» tmp wird von vorne nach hinten beschrieben.

» Nach letzter Schleifeniteration gilt fiir alle lo < r < s < hi,
dass tmp [r] <tmp[s] (= Bereich ist sortiert).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Marz 2023 15 / 23

A4. Sortieren Il: Mergesort Top-Down-Mergesort

Mergesort: Korrektheit

sort_aux:

» Induktionsbeweis iliber Bereichslange hi — lo
(immer 1 kleiner als Anzahl Felder im Bereich)

Basis hi — lo = —1: leerer Bereich ist sortiert.
Basis hi — lo = 0: Bereich mit nur einem Element ist sortiert.

Induktionshypothese: Mergesort ist korrekt fiir alle hi —lo < m

vV VvyVYyy

Induktionsschritt (m — 1 — m):

Mergesort macht zwei rekursive Aufrufe mit hi —lo < [m/2],
danach ist die Eingabe jeweils zwischen lo und mid und
zwischen mid + 1 und hi sortiert (It. Ind.-hyp).

Wir wissen bereits, dass der Merge-Schritt korrekt ist, also ist
am Ende der gesamte Bereich zwischen lo und hi sortiert.
Mergesort: Ruft sort_aux fiir gesamten Bereich auf,
daher ist am Ende die gesamte Eingabe sortiert.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Marz 2023 16 / 23

A4. Sortieren |l: Mergesort Top-Down-Mergesort

Mergesort: Eigenschaften (slido)

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - 1o) // 2

1
2

3

4

5 def sort_aux(array, tmp, lo, hi):
6

7

8

9 # //: Division mit Abrunden

10 sort_aux(array, tmp, lo, mid)
11 sort_aux(array, tmp, mid + 1, hi)
12 merge(array, tmp, lo, mid, hi)

Welche der folgenden Eigenschaften hat Mergesort?
In-place? Adaptiv? Stabil?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Marz 2023 17 / 23

A4. Sortieren Il: Mergesort Top-Down-Mergesort

Mergesort: Eigenschaften

» nicht in-place: verwendet zusatzlichen Speicherplatz fiir tmp
und fiir Aufrufstapel (call stack)

» Zeitbedarf: nicht adaptiv (ausser mit
Mergeabbruch-Verbesserung)
genauere Analyse: Kapitel A8

> stabil: merge praferiert array[i],
wenn array[i] gleich array[j].

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Marz 2023 18 / 23

A4. Sortieren Il: Mergesort Bottom-Up-Mergesort

A4.4 Bottom-Up-Mergesort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Mirz 2023 19 /23

A4. Sortieren Il: Mergesort Bottom-Up-Mergesort

Bottom-Up-Version

lo=0 lo=2 lo=4 lo=16
mid =0 mid = 2 mid=4 mid =06
hi=1 hi=3 hi=5 hi=16
lo=0 lo=4
mid =1 mid =5
hi=3 hi=16
lo=20
mid = 3
hi = 6
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Marz 2023 20 / 23

A4. Sortieren |l: Mergesort Bottom-Up-Mergesort

Bottom-Up-Mergesort: Algorithm

iterative Bottom-Up-Version

1 def sort(array):

2 n = len(array)

3 tmp = [0] * n

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge(array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Marz 2023 21 /23

A4. Sortieren Il: Mergesort

A4.5 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Zusammenfassung

23. Februar/8. Mirz 2023

22 /23

A4. Sortieren Il: Mergesort Zusammenfassung

Zusammenfassung

> Mergesort ist ein Teile-und-Herrsche-Verfahren, das den zu
sortierenden Bereich in zwei etwa gleich grosse Bereiche teilt.

» Der Merge-Schritt fiihrt zwei bereits sortierte Teilbereiche
zusammen.

> Mergesort ist stabil, arbeitet aber nicht in-place.

v

Die Top-Down-Variante ist ein rekursives Verfahren.

» Die Bottom-Up-Variante ist ein iteratives Verfahren.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23. Februar/8. Mirz 2023 23 /23

	Mergesort
	

	Merge-Schritt
	

	Top-Down-Mergesort
	

	Bottom-Up-Mergesort
	

	Zusammenfassung
	

