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Complexity Theory: What we already have seen

Complexity theory investigates which problems
are “easy” to solve and which ones are “hard”.

two important problem classes:

P: problems that are solvable in polynomial time
by “normal” computation mechanisms
NP: problems that are solvable in polynomial time
with the help of nondeterminism

We know that P ⊆ NP, but we do not know whether P = NP.

Many practically relevant problems are NP-complete:

They belong to NP.
All problems in NP can be polynomially reduced to them.

If there is an efficient algorithm for one NP-complete problem,
then there are efficient algorithms for all problems in NP.
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Complexity Class coNP

Definition (coNP)

coNP is the set of all languages L for which L̄ ∈ NP.

Example: The complement of SAT is in coNP.
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Hardness and Completeness

Definition (Hardness and Completeness)

Let C be a complexity class.

A problem Y is called C-hard if X ≤p Y for all problems X ∈ C.

Y is called C-complete if Y ∈ C and Y is C-hard.

Example (Tautology)

The following problem Tautology is coNP-complete:

Given: a propositional logic formula φ

Question: Is φ valid, i.e. is it true under all variable assignments?
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Known Results and Open Questions

Open

NP
?
= coNP

Known

P ⊆ coNP

If X is NP-complete then X̄ is coNP-complete.

If NP ̸= coNP then P ̸= NP.

If a coNP-complete problem is in NP, then NP = coNP.

If a coNP-complete problem is in P, then P = coNP = NP.
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Time and Space Complexity
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Reminder: Time Complexity Classes

Definition (Time Complexity Classes TIME and NTIME)

Let t : N → R+ be a function.

The time complexity class TIME(t(n)) is the collection of all
languages that are decidable by an O(t) time Turing machine, and
NTIME(t(n)) is the collection of all languages that are decidable
by an O(t) time nondeterministic Turing machine.

TIME(f ): all languages accepted by a DTM in time f .

NTIME(f ): all languages accepted by a NTM in time f .

P =
⋃

k∈N TIME(nk)

NP =
⋃

k∈NNTIME(nk)
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Space

Analogously: A TM decides a language L in space f if the
computation on every input visits at most f (|w |) tape cells
besides it input on the tape.

SPACE(f ): all languages decided by a DTM in space f .

NSPACE(f ): all languages decided by a NTM in space f .
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Important Complexity Classes Beyond NP

PSPACE =
⋃

k∈N SPACE(nk)

NPSPACE =
⋃

k∈NNSPACE(nk)

EXPTIME =
⋃

k∈N TIME(2n
k
)

EXPSPACE =
⋃

k∈N SPACE(2n
k
)

Some known results:

PSPACE = NPSPACE (from Savitch’s theorem)

PSPACE ⊆ EXPTIME ⊆ EXPSPACE
(at least one relationship strict)

P ̸= EXPTIME, PSPACE ̸= EXPSPACE

P ⊆ NP ⊆ PSPACE
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Polynomial Hierarchy
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Oracle Machines

An oracle machine is like a Turing machine that has access to an
oracle which can solve some decision problem in constant time.

Example oracle classes:

PNP = {L | L can get decided in polynomial time by a DTM
PNP = {L | with an oracle that decides some problem in NP}
NPNP = {L | L can get decided in pol. time by a NTM
NPNP = {L | with an oracle deciding some problem in NP}
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Polynomial Hierarchy

Inductively defined:

∆P
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⋃
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Polynomial Hierarchy: Results

PH ⊆ PSPACE (PH
?
= PSPACE is open)

There are complete problems for each level.

If there is a PH-complete problem, then the polynomial
hierarchy collapses to some finite level.

If P = NP, the polynomial hierarchy collapses to the first level.
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Counting
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#P

Complexity class #P (pronounced “Sharp P”)

Set of functions f : {0, 1}∗ → N0, where f (n) is the number
of accepting paths of a polynomial-time NTM

Example (#SAT)

The following problem #SAT is #P-complete:

Given: a propositional logic formula φ

Question: Under how many variable assignments is φ true?
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The End
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What’s Next?

contents of this course:

A. background ✓
▷ mathematical foundations and proof techniques

B. automata theory and formal languages ✓
▷ What is a computation?

C. Turing computability ✓
▷ What can be computed at all?

D. complexity theory

✓

▷ What can be computed efficiently?

E. more computability theory

more computability theory

▷ Other models of computability
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