
Theory of Computer Science
D6. Beyond NP

Gabriele Röger

University of Basel

May 30, 2022

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

Complexity Theory: What we already have seen

Complexity theory investigates which problems
are “easy” to solve and which ones are “hard”.

two important problem classes:

P: problems that are solvable in polynomial time
by “normal” computation mechanisms
NP: problems that are solvable in polynomial time
with the help of nondeterminism

We know that P ⊆ NP, but we do not know whether P = NP.

Many practically relevant problems are NP-complete:

They belong to NP.
All problems in NP can be polynomially reduced to them.

If there is an efficient algorithm for one NP-complete problem,
then there are efficient algorithms for all problems in NP.

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

coNP

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

Complexity Class coNP

Definition (coNP)

coNP is the set of all languages L for which L̄ ∈ NP.

Example: The complement of SAT is in coNP.

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

Hardness and Completeness

Definition (Hardness and Completeness)

Let C be a complexity class.

A problem Y is called C-hard if X ≤p Y for all problems X ∈ C.

Y is called C-complete if Y ∈ C and Y is C-hard.

Example (Tautology)

The following problem Tautology is coNP-complete:

Given: a propositional logic formula φ

Question: Is φ valid, i.e. is it true under all variable assignments?

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

Known Results and Open Questions

Open

NP
?
= coNP

Known

P ⊆ coNP

If X is NP-complete then X̄ is coNP-complete.

If NP ̸= coNP then P ̸= NP.

If a coNP-complete problem is in NP, then NP = coNP.

If a coNP-complete problem is in P, then P = coNP = NP.

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

Time and Space Complexity

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

Reminder: Time Complexity Classes

Definition (Time Complexity Classes TIME and NTIME)

Let t : N → R+ be a function.

The time complexity class TIME(t(n)) is the collection of all
languages that are decidable by an O(t) time Turing machine, and
NTIME(t(n)) is the collection of all languages that are decidable
by an O(t) time nondeterministic Turing machine.

TIME(f): all languages accepted by a DTM in time f .

NTIME(f): all languages accepted by a NTM in time f .

P =
⋃

k∈N TIME(nk)

NP =
⋃

k∈NNTIME(nk)

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

Space

Analogously: A TM decides a language L in space f if the
computation on every input visits at most f (|w |) tape cells
besides it input on the tape.

SPACE(f): all languages decided by a DTM in space f .

NSPACE(f): all languages decided by a NTM in space f .

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

Important Complexity Classes Beyond NP

PSPACE =
⋃

k∈N SPACE(nk)

NPSPACE =
⋃

k∈NNSPACE(nk)

EXPTIME =
⋃

k∈N TIME(2n
k
)

EXPSPACE =
⋃

k∈N SPACE(2n
k
)

Some known results:

PSPACE = NPSPACE (from Savitch’s theorem)

PSPACE ⊆ EXPTIME ⊆ EXPSPACE
(at least one relationship strict)

P ̸= EXPTIME, PSPACE ̸= EXPSPACE

P ⊆ NP ⊆ PSPACE

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

Polynomial Hierarchy

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

Oracle Machines

An oracle machine is like a Turing machine that has access to an
oracle which can solve some decision problem in constant time.

Example oracle classes:

PNP = {L | L can get decided in polynomial time by a DTM
PNP = {L | with an oracle that decides some problem in NP}
NPNP = {L | L can get decided in pol. time by a NTM
NPNP = {L | with an oracle deciding some problem in NP}

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

Polynomial Hierarchy

Inductively defined:

∆P
0 := ΣP

0 := ΠP
0 := P

∆P
i+1 := PΣP

i

ΣP
i+1 := NPΣP

i

ΠP
i+1 := coNPΣP

i

PH :=
⋃

k Σ
P
k

∆P
0 = ΣP

0 = ΠP
0 = P = ∆P

1

NP = ΣP
1 ΠP

1 = coNP

PNP = ∆P
2

ΣP
2 ΠP

2

∆P
3

ΣP
3 ΠP

3

...

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

Polynomial Hierarchy: Results

PH ⊆ PSPACE (PH
?
= PSPACE is open)

There are complete problems for each level.

If there is a PH-complete problem, then the polynomial
hierarchy collapses to some finite level.

If P = NP, the polynomial hierarchy collapses to the first level.

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

Counting

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

#P

Complexity class #P (pronounced “Sharp P”)

Set of functions f : {0, 1}∗ → N0, where f (n) is the number
of accepting paths of a polynomial-time NTM

Example (#SAT)

The following problem #SAT is #P-complete:

Given: a propositional logic formula φ

Question: Under how many variable assignments is φ true?

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

The End

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

What’s Next?

contents of this course:

A. background ✓
▷ mathematical foundations and proof techniques

B. automata theory and formal languages ✓
▷ What is a computation?

C. Turing computability ✓
▷ What can be computed at all?

D. complexity theory

✓

▷ What can be computed efficiently?

E. more computability theory

more computability theory

▷ Other models of computability

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

What’s Next?

contents of this course:

A. background ✓
▷ mathematical foundations and proof techniques

B. automata theory and formal languages ✓
▷ What is a computation?

C. Turing computability ✓
▷ What can be computed at all?

D. complexity theory ✓
▷ What can be computed efficiently?

E. more computability theory

more computability theory

▷ Other models of computability

coNP Time and Space Complexity Polynomial Hierarchy Counting The End

What’s Next?

contents of this course:

A. background ✓
▷ mathematical foundations and proof techniques

B. automata theory and formal languages ✓
▷ What is a computation?

C. Turing computability ✓
▷ What can be computed at all?

D. complexity theory ✓
▷ What can be computed efficiently?

E. more computability theory
▷ Other models of computability

	coNP
	

	Time and Space Complexity
	

	Polynomial Hierarchy
	

	Counting
	

	The End

