Theory of Computer Science

D2. Polynomial Reductions and NP-completeness

Gabriele Roger
University of Basel

May 16, 2022

Polynomial Reductions
©000000000000000

Polynomial Reductions

Summar

Polynomial Reductions NP-Hardness and NP-Completeness

O@00000000000000)(

Polynomial Reductions: |dea

m Reductions are a common and powerful concept in computer
science. We know them from Part C.

m The basic idea is that we solve a new problem by reducing it
to a known problem.

Polynomial Reductions NP-Hardness and NP-Completeness

O@00000000000000 (e}

Polynomial Reductions: |dea

m Reductions are a common and powerful concept in computer
science. We know them from Part C.

m The basic idea is that we solve a new problem by reducing it
to a known problem.

m In complexity theory we want to use reductions
that allow us to prove statements of the following kind:
Problem A can be solved efficiently
if problem B can be solved efficiently.

m For this, we need a reduction from A to B
that can be computed efficiently itself
(otherwise it would be useless for efficiently solving A).

Polynomial Reductions NP-Hardness and NP-Completeness

00@0000000000000 (e}

Polynomial Reductions

Definition (Polynomial Reduction)

Let AC X* and B C I'* be decision problems.
We say that A can be polynomially reduced to B,
written A <, B, if there is a function f : >* — " such that:
m f can be computed in polynomial time by a DTM
m i.e., there is a polynomial p and a DTM M such that M
computes f(w) in at most p(|w|) steps given input w € X*
m f reduces A to B
mie, forallweX*: weAiff f(w)eB

f is called a polynomial reduction from A to B

German: A polynomiell auf B reduzierbar,
polynomielle Reduktion von A auf B

Polynomial Reductions NP-Hardness and NP-Completeness

000@000000000000)(

Polynomial Reductions: Remarks

m Polynomial reductions are also called Karp reductions
(after Richard Karp, who wrote a famous paper
describing many such reductions in 1972).
m In practice, of course we do not have to specify a DTM for f:

it just has to be clear that f can be computed
in polynomial time by a deterministic algorithm.

Polynomial Reductions NP-Hardness and NP-Completeness

0000800000000 000 (e}

Polynomial Reductions: Example (1)

Definition (HAMILTONCYCLE)

HaMiLTONCYCLE is the following decision problem:
m Given: undirected graph G = (V,E)

m Question: Does G contain a Hamilton cycle?

Reminder:

Definition (Hamilton Cycle)

A Hamilton cycle of G is a sequence of vertices in V,
T = (o, ..., Vn), with the following properties:

m 7 is a path: there is an edge from v; to vj4; forall 0 </ < n
m 7isacycle: vg=v,
m 7 is simple: v; # v; for all i # j with i,j <n

m 7 is Hamiltonian: all nodes of V are included in

Polynomial Reductions NP-Hardness and NP-Completeness

0O0000e0000000000 00

Polynomial Reductions: Example (2)

Definition (TSP)
TSP (traveling salesperson problem) is the following
decision problem:
m Given: finite set S # () of cities, symmetric cost function
cost: S x S — Ny, cost bound K € Ny
m Question: Is there a tour with total cost at most K, i.e.,
a permutation (si, ..., s,) of the cities with
S =L cost(s;, si1) + cost(sp, 51) < K?

German: Problem der/des Handlungsreisenden

Polynomial Reductions
000000®000000000

Polynomial Reductions: Example (3)

Theorem (HAMILTONCYCLE <, TSP)

HamILTONCYCLE <, TSP.

~~ blackboard OJ I

Polynomial Reductions NP-Hardness and NP-Completeness Summar

0000000000000 00 (e}

Questions

o

N

Questions?

Polynomial Reductions NP-Hardness and NP-Completeness Summar

0000000080000 000)(

Exercise: Polynomial Reduction

Definition (HAMILTONIANCOMPLETION)
HAMILTONTANCOMPLETION is the following decision problem:
m Given: undirected graph G = (V, E), number k € Ny

m Question: Can G be extended with at most k edges such that
the resulting graph has a Hamilton cycle?

Show that
HAMILTONCYCLE <, HAMILTONIANCOMPLETION.

Polynomial Reductions)\ ardness and NP-Completeness

000000000 e000000

Reminder: P and NP

P: class of languages that are decidable in polynomial time
by a deterministic Turing machine

NP: class of languages that are decidable in polynomial time

by a non-deterministic Turing machine

Polynomial Reductions NP-Hardness and NP-Completeness Summary

000000000080 0000)(

Properties of Polynomial Reductions (1)

Theorem (Properties of Polynomial Reductions)

Let A, B and C decision problems.
Q@ IfA<,Band B P, then Ac P.
Q@ IfA<, B and B € NP, then A € NP.
Q@ IfA<,Band A¢ P, then B ¢ P.
Q IfA<, Band A¢ NP, then B ¢ NP.
Q@ IfA<,Band B <, C, then A<, C.

Polynomial Reductions NP-Hardness and NP-Completeness

00000000000 e0000 (e}

Properties of Polynomial Reductions (2)

for 1.

We must show that there is a DTM accepting A
in polynomial time.

We know:

m There is a DTM Mg that accepts B in time p,
where p is a polynomial.

m There is a DTM My that computes a reduction from A to B
in time g, where g is a polynomial.

Polynomial Reductions NP-Hardness and NP-Completeness Summary

000000000000 e000 (e}

Properties of Polynomial Reductions (3)

Proof (continued).

Consider the machine M that first behaves like M¢, and then
(after My stops) behaves like Mg on the output of M.
M accepts A:

m M behaves on input w as Mg does on input f(w),
so it accepts w if and only if f(w) € B.

m Because f is a reduction, w € A iff f(w) € B.

Polynomial Reductions

ss and NP-Completeness
0000000000000 e00

Summary

Properties of Polynomial Reductions (4)

Proof (continued).

Computation time of M on input w:
m first Mr runs on input w: < g(|w|) steps
m then Mg runs on input f(w): < p(|f(w)]|) steps
m |f(w)| < |w|+ q(Jw|) because in g(|w]) steps,
My can write at most g(|w|) additional symbols onto the tape

~ total computation time < g(|w|) + p(|f(w)])
< q(lw]) + p(Iw| + q(|w]))
~ this is polynomial in |w| ~~ A € P.

Polynomial Reductions NP-Hardness and NP-Completeness Summar

0000000000000 0e0)(

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.:
analogous to 1., only that Mg and M are NTMs

Polynomial Reductions NP-Hardness and NP-Completeness

0000000000000 0e0)(

Properties of Polynomial Reductions (5)

Proof (continued).
for 2.:
analogous to 1., only that Mg and M are NTMs

of 3.4+4.:
equivalent formulations of 1.4-2. (contraposition)

Polynomial Reductions NP-Hardness and NP-Completeness

0000000000000 0e0 (e]e

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.:

analogous to 1., only that Mg and M are NTMs
of 3.+4.:

equivalent formulations of 1.4-2. (contraposition)
of 5.:

Let A <, B with reduction f and B <, C with reduction g.
Then g o f is a reduction of A to C.

The computation time of the two computations in sequence
is polynomial by the same argument used in the proof for 1.

Ol

v

Polynomial Reductions NP-Hardness and NP-Completeness Summar

0000000000000 00e (e}

Questions

o

N

Questions?

NP-Hardness and NP-Completeness

@000

NP-Hardness and NP-Completeness

NP-Hardness and NP-Completeness
000

NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)

Summar

Let B be a decision problem.
B is called NP-hard if A <, B for all problems A € NP.
B is called NP-complete if B € NP and B is NP-hard.

German: NP-schwer (selten: NP-hart), NP-vollstandig

NP-Hardness and NP-Completeness Summar
00@0 00

NP-Complete Problems: Meaning

m NP-hard problems are “at least as difficult”
as all problems in NP.

m NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

NP-Hardness and NP-Completeness Summary
00@0 00

NP-Complete Problems: Meaning

m NP-hard problems are “at least as difficult’
as all problems in NP.

m NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

m If A € P for any NP-complete problem A, then P = NP.
(Why?)

m That means that either there are efficient algorithms
for all NP-complete problems or for none of them.

NP-Hardness and NP-Completeness Summary
00@0 00

NP-Complete Problems: Meaning

m NP-hard problems are “at least as difficult’
as all problems in NP.

m NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

m If A € P for any NP-complete problem A, then P = NP.
(Why?)

m That means that either there are efficient algorithms
for all NP-complete problems or for none of them.

m Do NP-complete problems actually exist?

NP-Hardness and NP-Completeness Summar

[eJe]e]]

Questions

o

~

Questions?

Summan
0

Summary

NP-Hardness and NP-Completeness Summary
0000 o

Summary

polynomial reductions: A <, B if
there is a total function f computable in polynomial time,
such that for all words w: w € A iff f(w) € B

m A<, B implies that A is “at most as difficult” as B
m polynomial reductions are transitive

m NP-hard problems B: A <, B for all A€ NP

m NP-complete problems B: B € NP and B is NP-hard

	Polynomial Reductions
	

	NP-Hardness and NP-Completeness
	

	Summary
	

