

Theory of Computer Science

D1. Nondeterministic Algorithms, P and NP

Gabriele Röger

University of Basel

May 11, 2022

Theory of Computer Science

May 11, 2022 — D1. Nondeterministic Algorithms, P and NP

D1.1 Motivation

D1.2 How to Measure Runtime?

D1.3 Decision Problems

D1.4 Nondeterminism

D1.5 P and NP

Overview: Course

contents of this course:

- A. background ✓
 - ▷ mathematical foundations and proof techniques
- B. automata theory and formal languages ✓
 - ▷ What is a computation?
- C. Turing computability ✓
 - ▷ What can be computed at all?
- D. complexity theory
 - ▷ What can be computed efficiently?
- E. more computability theory
 - ▷ Other models of computability

D1.1 Motivation

A Scenario (1)

Example Scenario

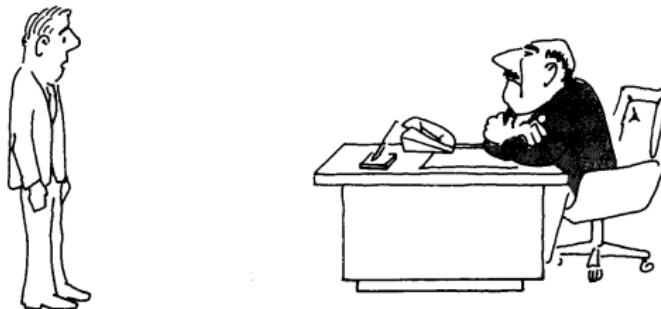
- ▶ You are a programmer at a logistics company.
- ▶ Your boss gives you the task of developing a program to optimize the route of a delivery truck:
 - ▶ The truck begins its route at the company depot.
 - ▶ It has to visit 50 stops.
 - ▶ You know the distances between all relevant locations (stops and depot).
 - ▶ Your program should compute a tour visiting all stops and returning to the depot on a **shortest route**.

A Scenario (2)

Example Scenario (ctd.)

- ▶ You work on the problem for weeks, but you do not manage to complete the task.
- ▶ All of your attempted programs
 - ▶ compute routes that are possibly **suboptimal**, or
 - ▶ do not terminate in reasonable time (say: within a month).
- ▶ What do you say to your boss?

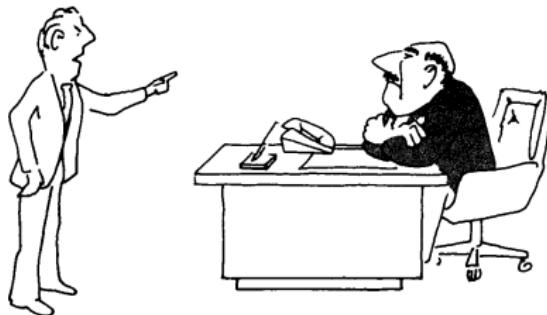
What You Don't Want to Say



**"I can't find an efficient algorithm,
I guess I'm just too dumb."**

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 2

What You Would Like to Say



“I can’t find an efficient algorithm,
because no such algorithm is possible!”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 2

What Complexity Theory Allows You to Say

“I can’t find an efficient algorithm,
but neither can all these famous people.”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 3

Why Complexity Theory?

Complexity Theory

Complexity theory tells us which problems can be solved quickly (“simple problems”) and which ones cannot (“hard problems”).

German: Komplexitätstheorie

- ▶ This is useful in practice because simple and hard problems require different techniques to solve.
- ▶ If we can show that a problem is hard we do not need to waste our time with the (futile) search for a “simple” algorithm.

Test Your Intuition! (1)

- ▶ The following slide lists some **graph problems**.
- ▶ The input is always a **directed graph** $G = \langle V, E \rangle$.
- ▶ **How difficult** are the problems in your opinion?
- ▶ Sort the problems
from **easiest** (= requires least amount of time to solve)
to **hardest** (= requires most time to solve)
- ▶ **no justification necessary**, just follow your intuition!
- ▶ **anonymous** and **not graded**

Test Your Intuition! (2)

- ① Find a **simple path** (= without cycle) from $u \in V$ to $v \in V$ with **minimal length**.
- ② Find a **simple path** (= without cycle) from $u \in V$ to $v \in V$ with **maximal length**.
- ③ Determine whether G is **strongly connected** (every node is reachable from every other node).
- ④ Find a **cycle** (non-empty path from u to u for any $u \in V$; multiple visits of nodes are allowed).
- ⑤ Find a **cycle** that visits **all** nodes.
- ⑥ Find a **cycle** that visits a **given node u** .
- ⑦ Find a path that **visits all nodes** without repeating a node.
- ⑧ Find a path that **uses all edges** without repeating an edge.

D1.2 How to Measure Runtime?

How to Measure Runtime?

- ▶ Time complexity is a way to measure how much time it takes to solve a problem.
- ▶ How can we define such a measure appropriately?

German: Zeitkomplexität/Zeitaufwand

Example Statements about Runtime

Example statements about runtime:

- ▶ “Running sort `/usr/share/dict/words` on the computer dakar takes 0.035 seconds.”
- ▶ “With a 1 MiB input file, sort takes at most 1 second on a modern computer.”
- ▶ “Quicksort is faster than sorting by insertion.”
- ▶ “Sorting by insertion is slow.”

~~ Very different statements with different **pros and cons**.

Precise Statements vs. General Statements

Example Statement about Runtime

“Running sort `/usr/share/dict/words`
on the computer dakar takes 0.035 seconds.”

advantage: very **precise**

disadvantage: not **general**

- ▶ **input-specific:**

What if we want to sort other files?

- ▶ **machine-specific:**

What happens on a different computer?

- ▶ **even situation-specific:**

Will we get the same result tomorrow that we got today?

General Statements about Runtime

In this course we want to make **general** statements about runtime. We accomplish this in three ways:

1. General Inputs

Instead of **concrete** inputs, we talk about **general types** of input:

- ▶ **Example:** runtime to sort an input of size n in the **worst case**
- ▶ **Example:** runtime to sort an input of size n in the **average case**

here: runtime for input size n in the **worst case**

General Statements about Runtime

In this course we want to make **general** statements about runtime. We accomplish this in three ways:

2. Ignoring Details

Instead of **exact formulas** for the runtime we specify the **order of magnitude**:

- ▶ **Example:** instead of saying that we need time $\lceil 1.2n \log n \rceil - 4n + 100$, we say that we need time $O(n \log n)$.
- ▶ **Example:** instead of saying that we need time $O(n \log n)$, $O(n^2)$ or $O(n^4)$, we say that we need **polynomial** time.

here: What can be computed in **polynomial time**?

General Statements about Runtime

In this course we want to make **general** statements about runtime. We accomplish this in three ways:

3. Abstract Cost Measures

Instead of the **runtime on a concrete computer** we consider a **more abstract** cost measure:

- ▶ Example: count the number of executed **machine code statements**
- ▶ Example: count the number of executed **Java byte code statements**
- ▶ Example: count the number of **element comparisons** of a sorting algorithms

here: count the computation steps of a **Turing machine** (**polynomially equivalent** to other measures)

D1.3 Decision Problems

Decision Problems

- ▶ As before, we simplify our investigation by restricting our attention to **decision problems**.
- ▶ More complex computational problems can be solved with multiple queries for an appropriately defined decision problem (“playing 20 questions”).
- ▶ Formally, decision problems are **languages** (as before), but we use an informal “**given**” / “**question**” notation where possible.

Example: Decision vs. General Problem (1)

Definition (Hamilton Cycle)

Let $G = \langle V, E \rangle$ be a (directed or undirected) graph.

A **Hamilton cycle** of G is a sequence of vertices in V , $\pi = \langle v_0, \dots, v_n \rangle$, with the following properties:

- ▶ π is a path: there is an edge from v_i to v_{i+1} for all $0 \leq i < n$
- ▶ π is a cycle: $v_0 = v_n$
- ▶ π is simple: $v_i \neq v_j$ for all $i \neq j$ with $i, j < n$
- ▶ π is Hamiltonian: all nodes of V are included in π

German: Hamiltonkreis/Hamiltonzyklus

Example: Decision vs. General Problem (2)

Example (Hamilton Cycles in Directed Graphs)

\mathcal{P} : general problem DIRHAMILTONCYCLEGEN

- ▶ **Input:** directed graph $G = \langle V, E \rangle$
- ▶ **Output:** a Hamilton cycle of G or a message that none exists

\mathcal{D} : decision problem DIRHAMILTONCYCLE

- ▶ **Given:** directed graph $G = \langle V, E \rangle$
- ▶ **Question:** Does G contain a Hamilton cycle?

These problems are **polynomially equivalent**:

from a polynomial algorithm for one of the problems

one can construct a polynomial algorithm for the other problem.

(Without proof.)

Algorithms for Decision Problems

Algorithms for decision problems:

- ▶ Where possible, we specify algorithms for decision problems in **pseudo-code**.
- ▶ Since they are only yes/no questions, we do not have to return a general result.
- ▶ Instead we use the statements
 - ▶ **ACCEPT** to **accept** the given input (“yes” answer) and
 - ▶ **REJECT** to **reject** it (“no” answer).
- ▶ Where we must be more formal, we use **Turing machines** and the notion of accepting from chapter B10.

D1.4 Nondeterminism

Nondeterminism

- ▶ To develop complexity theory, we need the algorithmic concept of **nondeterminism**.
- ▶ already known for **Turing machines** (\rightsquigarrow chapter B10):
 - ▶ An NTM can have **more than one possible successor configuration** for a given configuration.
 - ▶ Input x is accepted if there is **at least one possible computation** (configuration sequence) that leads to the accept state.
- ▶ Here we analogously introduce nondeterminism for pseudo-code.

German: Nichtdeterminismus

Nondeterministic Algorithms

nondeterministic algorithms:

- ▶ All constructs of deterministic algorithms are also allowed in nondeterministic algorithms: **IF**, **WHILE**, etc.
- ▶ Additionally, there is a **nondeterministic assignment**:
GUESS $x_i \in \{0, 1\}$

where x_i is a program variable.

German: nichtdeterministische Zuweisung

Nondeterministic Algorithms: Acceptance

- ▶ Meaning of **GUESS** $x_i \in \{0, 1\}$:
 x_i is assigned either the value 0 or the value 1.
- ▶ This implies that the behavior of the program on a given input is no longer uniquely defined: there are multiple possible execution paths.
- ▶ The program accepts a given input if at least one execution path leads to an **ACCEPT** statement.
- ▶ Otherwise, the input is rejected.

Note: asymmetry between accepting and rejecting!
(cf. Turing-recognizability)

More Complex GUESS Statements

- ▶ We will also guess more than one bit at a time:

GUESS $x \in \{1, 2, \dots, n\}$

or more generally

GUESS $x \in S$

for a finite set S .

- ▶ These are abbreviations and can be split into $\lceil \log_2 n \rceil$ (or $\lceil \log_2 |S| \rceil$) “atomic” **GUESS** statements.

Example: Nondeterministic Algorithms (1)

Example (DIRHAMILTONCYCLE)

input: directed graph $G = \langle V, E \rangle$

start := an arbitrary node from V

current := *start*

remaining := $V \setminus \{\text{start}\}$

WHILE *remaining* $\neq \emptyset$:

GUESS *next* \in *remaining*

IF $\langle \text{current}, \text{next} \rangle \notin E$:

REJECT

remaining := *remaining* $\setminus \{\text{next}\}$

current := *next*

IF $\langle \text{current}, \text{start} \rangle \in E$:

ACCEPT

ELSE:

REJECT

Example: Nondeterministic Algorithms (2)

- ▶ With appropriate data structures, this algorithm solves the problem in $O(n \log n)$ program steps, where $n = |V| + |E|$ is the size of the input.
- ▶ How many steps would a **deterministic** algorithm need?

Guess and Check

- ▶ The `DIRHAMILTONCYCLE` example illustrates a general design principle for nondeterministic algorithms:
guess and check
- ▶ In general, nondeterministic algorithms can solve a problem by first guessing a “solution” and then verifying that it is indeed a solution.
(In the example, these two steps are interleaved.)
- ▶ If solutions to a problem can be **efficiently verified**, then the problem can also be **efficiently solved** if nondeterminism may be used.

German: Raten und Prüfen

The Power of Nondeterminism

- ▶ Nondeterministic algorithms are very powerful because they can “guess” the “correct” computation step.
- ▶ Or, interpreted differently: they go through many possible computations “in parallel”, and it suffices if **one** of them is successful.
- ▶ Can they solve problems efficiently (in polynomial time) which deterministic algorithms **cannot** solve efficiently?
- ▶ **This is the big question!**

D1.5 P and NP

Impact of Nondeterminism?

- ▶ We earlier established that deterministic and non-deterministic Turing machines recognize the same class of languages.
→ For this aspect, non-determinism did not make a difference.
- ▶ Now we consider what decision problems can be solved in polynomial time.
- ▶ Does it make a difference whether we allow non-determinism?

This is the famous P vs. NP question!

Runtime of a Deterministic Turing Machine

Definition (Runtime of a DTM)

Let M be a DTM that halts on all inputs. The **running time** or **time complexity** of M is the function $f : \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps that M uses on any input of length n .

We say that

- ▶ M runs in time f and that
- ▶ M is an f time Turing machine.

Big-O

Definition (Big-O)

Let f and g be functions $f, g : \mathbb{N} \rightarrow \mathbb{R}^+$.

We say that $f \in O(g)$ if positive integers c and n_0 exist such that for every integer $n \geq n_0$

$$f(n) \leq cg(n).$$

Complexity Class P

Definition (Time Complexity Class TIME)

Let $t : \mathbb{N} \rightarrow \mathbb{R}^+$ be a function.

Define the **time complexity class $\text{TIME}(t(n))$** to be the collection of all languages that are decidable by an $O(t)$ time Turing machine.

Definition (P)

P is the class of languages that are **decidable in polynomial time by a deterministic single-tape Turing machine**. In other words,

$$P = \bigcup_k \text{TIME}(n^k).$$

Runtime of a Non-deterministic Turing Machine

Definition (Runtime of a NTM)

Let M be a NTM that is a decider, i. e. all its computation branches halt on all inputs.

The **running time** or **time complexity** of M is the function $f : \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps that M uses on **any branch of its computation** on any input of length n .

Complexity Class NP

Definition (Time Complexity Class NTIME)

Let $t : \mathbb{N} \rightarrow \mathbb{R}^+$ be a function.

Define the time complexity class **NTIME**($t(n)$) to be the collection of all languages that are decidable by an $O(t)$ time nondeterministic Turing machine.

Definition (NP)

NP is the class of languages that are decidable in polynomial time by a **non-deterministic** single-tape Turing machine. In other words,

$$\text{NP} = \bigcup_k \text{NTIME}(n^k).$$

P and NP: Remarks

- ▶ Sets of languages like P and NP that are defined in terms of computation time of TMs (or other computation models) are called **complexity classes**.
- ▶ We know that $P \subseteq NP$. ([Why?](#))
- ▶ Whether the converse is also true is an open question: this is the famous **P-NP problem**.

German: Komplexitätsklassen, P-NP-Problem

Example: $\text{DIRHAMILTONCYCLE} \in \text{NP}$

Example ($\text{DIRHAMILTONCYCLE} \in \text{NP}$)

The nondeterministic algorithm of the previous section solves the problem and can be implemented on an NTM in polynomial time.

- ▶ Is $\text{DIRHAMILTONCYCLE} \in \text{P}$ also true?
- ▶ The answer is unknown.
- ▶ So far, only exponential deterministic algorithms for the problem are known.

Simulation of NTMs with DTMs

- ▶ Unlike DTMs, NTMs are not a **realistic** computation model: they cannot be directly implemented on computers.
- ▶ But NTMs can be **simulated** by systematically trying all computation paths, e. g., with a **breadth-first search**.

More specifically:

- ▶ Let M be an NTM that decides language L in time f , where $f(n) \geq n$ for all $n \in \mathbb{N}_0$.
- ▶ Then we can specify a DTM M' that decides L in time f' , where $f'(n) = 2^{O(f(n))}$.
- ▶ **without proof**
(cf. "Introduction to the Theory of Computation" by Michael Sipser (3rd edition), Theorem 7.11)

Summary (1)

- ▶ Complexity theory deals with the question which problems can be solved efficiently and which ones cannot.
- ▶ here: focus on what can be computed in polynomial time
- ▶ To formalize this, we use Turing machines, but other formalisms are polynomially equivalent.
- ▶ We consider decision problems, but the results often directly transfer to general computational problems.

Summary (2)

important concept: **nondeterminism**

- ▶ Nondeterministic algorithms can “guess”,
i. e., perform multiple computations “at the same time”.
- ▶ An input receives a “yes” answer if **at least one computation path** accepts it.
- ▶ in NTMs: with **nondeterministic transitions**
($\delta(q, a)$ contains multiple elements)
- ▶ in pseudo-code: with **GUESS** statements

Summary (3)

- ▶ P : languages decidable by **DTMs** in polynomial time
- ▶ NP : languages decidable by **NTMs** in polynomial time
- ▶ $P \subseteq NP$ but it is an **open question** whether $P = NP$.