

Theory of Computer Science

C5. Rice's Theorem

Gabriele Röger

University of Basel

May 9, 2022

Rice's Theorem

Rice's Theorem (1)

- We have shown that the following problems are undecidable:
 - halting problem H
 - halting problem on empty tape H_0
- Many more results of this type could be shown.
- Instead, we prove a much more general result,
Rice's theorem, which shows that a very large class
of different problems are undecidable.
- Rice's theorem can be summarized informally as:
every non-trivial question about **what** a given Turing machine
computes is undecidable.

Rice's Theorem (2)

Theorem (Rice's Theorem)

Let \mathcal{R} be the class of all computable partial functions.

Let \mathcal{S} be an **arbitrary** subset of \mathcal{R} except $\mathcal{S} = \emptyset$ or $\mathcal{S} = \mathcal{R}$.

Then the language

$$C(\mathcal{S}) = \{w \in \{0, 1\}^* \mid \text{the function computed by } M_w \text{ is in } \mathcal{S}\}$$

is undecidable.

German: Satz von Rice

Question: why the restriction to $\mathcal{S} \neq \emptyset$ and $\mathcal{S} \neq \mathcal{R}$?

Extension (without proof): in most cases neither $C(\mathcal{S})$ nor $\overline{C(\mathcal{S})}$ is Turing-recognizable. (But there are sets \mathcal{S} for which one of the two languages is Turing-recognizable.)

Rice's Theorem (3)

Proof.

Let Ω be the partial function that is undefined everywhere.

Rice's Theorem (3)

Proof.

Let Ω be the partial function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in \mathcal{S}$

Rice's Theorem (3)

Proof.

Let Ω be the partial function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in \mathcal{S}$

Let $q \in \mathcal{R} \setminus \mathcal{S}$ be an arbitrary computable partial function outside of \mathcal{S} (exists because $\mathcal{S} \subseteq \mathcal{R}$ and $\mathcal{S} \neq \mathcal{R}$).

Rice's Theorem (3)

Proof.

Let Ω be the partial function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in \mathcal{S}$

Let $q \in \mathcal{R} \setminus \mathcal{S}$ be an arbitrary computable partial function outside of \mathcal{S} (exists because $\mathcal{S} \subseteq \mathcal{R}$ and $\mathcal{S} \neq \mathcal{R}$).

Let Q be a Turing machine that computes q .

...

Rice's Theorem (4)

Proof (continued).

We show that $\bar{H}_0 \leq C(\mathcal{S})$.

Consider function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$,
where $f(w)$ is defined as follows:

- Construct TM M that first behaves on input y like M_w on the empty tape (independently of what y is).
- Afterwards (if that computation terminates!)
 M clears the tape, creates the start configuration of Q for input y and then simulates Q .
- $f(w)$ is the encoding of this TM M

Rice's Theorem (4)

Proof (continued).

We show that $\bar{H}_0 \leq C(\mathcal{S})$.

Consider function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$,
where $f(w)$ is defined as follows:

- Construct TM M that first behaves on input y like M_w on the empty tape (independently of what y is).
- Afterwards (if that computation terminates!)
 M clears the tape, creates the start configuration of Q for input y and then simulates Q .
- $f(w)$ is the encoding of this TM M

f is total and computable.

...

Rice's Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by $f(w)$?

Rice's Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by $f(w)$?

$M_{f(w)}$ computes $\begin{cases} \Omega & \text{if } M_w \text{ does not terminate on } \varepsilon \\ q & \text{otherwise} \end{cases}$

Rice's Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by $f(w)$?

$M_{f(w)}$ computes $\begin{cases} \Omega & \text{if } M_w \text{ does not terminate on } \varepsilon \\ q & \text{otherwise} \end{cases}$

For all words $w \in \{0, 1\}^*$:

$w \in H_0 \implies M_w \text{ terminates on } \varepsilon$

$\implies M_{f(w)}$ computes the function q

\implies the function computed by $M_{f(w)}$ is not in \mathcal{S}

$\implies f(w) \notin C(\mathcal{S})$

...

Rice's Theorem (6)

Proof (continued).

Further:

- $w \notin H_0 \implies M_w \text{ does not terminate on } \varepsilon$
- $\implies M_{f(w)} \text{ computes the function } \Omega$
- $\implies \text{the function computed by } M_{f(w)} \text{ is in } \mathcal{S}$
- $\implies f(w) \in C(\mathcal{S})$

Rice's Theorem (6)

Proof (continued).

Further:

- $w \notin H_0 \implies M_w \text{ does not terminate on } \varepsilon$
- $\implies M_{f(w)} \text{ computes the function } \Omega$
- $\implies \text{the function computed by } M_{f(w)} \text{ is in } \mathcal{S}$
- $\implies f(w) \in C(\mathcal{S})$

Together this means: $w \notin H_0$ iff $f(w) \in C(\mathcal{S})$,
thus $w \in \bar{H}_0$ iff $f(w) \in C(\mathcal{S})$.

Rice's Theorem (6)

Proof (continued).

Further:

- $w \notin H_0 \implies M_w \text{ does not terminate on } \varepsilon$
- $\implies M_{f(w)} \text{ computes the function } \Omega$
- $\implies \text{the function computed by } M_{f(w)} \text{ is in } \mathcal{S}$
- $\implies f(w) \in C(\mathcal{S})$

Together this means: $w \notin H_0$ iff $f(w) \in C(\mathcal{S})$,
thus $w \in \bar{H}_0$ iff $f(w) \in C(\mathcal{S})$.

Therefore, f is a reduction of \bar{H}_0 to $C(\mathcal{S})$.

Rice's Theorem (6)

Proof (continued).

Further:

- $w \notin H_0 \implies M_w \text{ does not terminate on } \varepsilon$
- $\implies M_{f(w)} \text{ computes the function } \Omega$
- $\implies \text{the function computed by } M_{f(w)} \text{ is in } \mathcal{S}$
- $\implies f(w) \in C(\mathcal{S})$

Together this means: $w \notin H_0$ iff $f(w) \in C(\mathcal{S})$,
thus $w \in \bar{H}_0$ iff $f(w) \in C(\mathcal{S})$.

Therefore, f is a reduction of \bar{H}_0 to $C(\mathcal{S})$.

Since H_0 is undecidable, \bar{H}_0 is also undecidable.

Rice's Theorem (6)

Proof (continued).

Further:

- $w \notin H_0 \implies M_w \text{ does not terminate on } \varepsilon$
- $\implies M_{f(w)} \text{ computes the function } \Omega$
- $\implies \text{the function computed by } M_{f(w)} \text{ is in } \mathcal{S}$
- $\implies f(w) \in C(\mathcal{S})$

Together this means: $w \notin H_0$ iff $f(w) \in C(\mathcal{S})$,
thus $w \in \bar{H}_0$ iff $f(w) \in C(\mathcal{S})$.

Therefore, f is a reduction of \bar{H}_0 to $C(\mathcal{S})$.

Since H_0 is undecidable, \bar{H}_0 is also undecidable.

We can conclude that $C(\mathcal{S})$ is undecidable.

...

Rice's Theorem (7)

Proof (continued).

Case 2: $\Omega \notin \mathcal{S}$

Analogous to Case 1 but this time choose $q \in \mathcal{S}$.

The corresponding function f then reduces H_0 to $C(\mathcal{S})$.

Thus, it also follows in this case that $C(\mathcal{S})$ is undecidable. □

Rice's Theorem: Consequences

Was it worth it?

We can now conclude immediately that (for example) the following informally specified problems are all undecidable:

- Does a given TM compute a constant function?
- Does a given TM compute a total function
(i. e. will it always terminate, and in particular terminate in a “correct” configuration)?
- Is the output of a given TM always longer than its input?
- Does a given TM compute the identity function?
- Does a given TM compute the computable function f ?
- ...

Rice's Theorem: Examples

- Does a given TM compute a constant function?

$\mathcal{S} = \{f \mid f \text{ is total and computable and}$
 $\text{for all } x, y \text{ in the domain of } f : f(x) = f(y)\}$

Rice's Theorem: Examples

- Does a given TM compute a constant function?

$\mathcal{S} = \{f \mid f \text{ is total and computable and}$
 $\text{for all } x, y \text{ in the domain of } f : f(x) = f(y)\}$

- Does a given TM compute a total function?

$\mathcal{S} = \{f \mid f \text{ is total and computable}\}$

Rice's Theorem: Examples

- Does a given TM compute a constant function?

$\mathcal{S} = \{f \mid f \text{ is total and computable and}$
 $\text{for all } x, y \text{ in the domain of } f : f(x) = f(y)\}$

- Does a given TM compute a total function?

$\mathcal{S} = \{f \mid f \text{ is total and computable}\}$

- Does a given TM compute the identity function?

$\mathcal{S} = \{f \mid f(x) = x \text{ for all } x\}$

Rice's Theorem: Examples

- Does a given TM compute a constant function?

$\mathcal{S} = \{f \mid f \text{ is total and computable and}$
 $\text{for all } x, y \text{ in the domain of } f : f(x) = f(y)\}$

- Does a given TM compute a total function?

$\mathcal{S} = \{f \mid f \text{ is total and computable}\}$

- Does a given TM compute the identity function?

$\mathcal{S} = \{f \mid f(x) = x \text{ for all } x\}$

- Does a given TM add two natural numbers?

$\mathcal{S} = \{f : \mathbb{N}_0^2 \rightarrow \mathbb{N}_0 \mid f(x, y) = x + y\}$

Rice's Theorem: Examples

- Does a given TM compute a constant function?

$\mathcal{S} = \{f \mid f \text{ is total and computable and}$
 $\text{for all } x, y \text{ in the domain of } f : f(x) = f(y)\}$

- Does a given TM compute a total function?

$\mathcal{S} = \{f \mid f \text{ is total and computable}\}$

- Does a given TM compute the identity function?

$\mathcal{S} = \{f \mid f(x) = x \text{ for all } x\}$

- Does a given TM add two natural numbers?

$\mathcal{S} = \{f : \mathbb{N}_0^2 \rightarrow \mathbb{N}_0 \mid f(x, y) = x + y\}$

- Does a given TM compute the computable function f ?

$\mathcal{S} = \{f\}$

(full automation of software verification is impossible)

Exercise

This was an exam question in 2019.

Is the following informally described problem decidable? Give a brief justification.

Given a deterministic Turing machine M , is the language recognized by M regular?

Rice's Theorem: Pitfalls

- $\mathcal{S} = \{f \mid f \text{ can be computed by a DTM with an even number of states}\}$

Rice's theorem not applicable because $\mathcal{S} = \mathcal{R}$

Rice's Theorem: Pitfalls

- $\mathcal{S} = \{f \mid f \text{ can be computed by a DTM with an even number of states}\}$
Rice's theorem not applicable because $\mathcal{S} = \mathcal{R}$
- $\mathcal{S} = \{f : \{0, 1\}^* \rightarrow_p \{0, 1\} \mid f(w) = 1 \text{ iff } M_w \text{ does not terminate on } \epsilon\}$?
Rice's theorem not applicable because $\mathcal{S} \not\subseteq \mathcal{R}$

Rice's Theorem: Pitfalls

- $\mathcal{S} = \{f \mid f \text{ can be computed by a DTM with an even number of states}\}$
Rice's theorem not applicable because $\mathcal{S} = \mathcal{R}$
- $\mathcal{S} = \{f : \{0, 1\}^* \rightarrow_p \{0, 1\} \mid f(w) = 1 \text{ iff } M_w \text{ does not terminate on } \epsilon\}$?
Rice's theorem not applicable because $\mathcal{S} \not\subseteq \mathcal{R}$
- Show that $\{w \mid M_w \text{ traverses all states on every input}\}$ is undecidable.
Rice's theorem not directly applicable because not a semantic property (the function computed by M_w can also be computed by a TM that does not traverse all states)

Rice's Theorem: Practical Applications

Undecidable due to Rice's theorem + a small reduction:

- **automated debugging:**
 - Can a given variable ever receive a `null` value?
 - Can a given assertion in a program ever trigger?
 - Can a given buffer ever overflow?
- **virus scanners and other software security analysis:**
 - Can this code do something harmful?
 - Is this program vulnerable to SQL injections?
 - Can this program lead to a privilege escalation?
- **optimizing compilers:**
 - Is this dead code?
 - Is this a constant expression?
 - Can pointer aliasing happen here?
 - Is it safe to parallelize this code path?
- **parallel program analysis:**
 - Is a deadlock possible here?
 - Can a race condition happen here?

Questions



Further Undecidable Problems

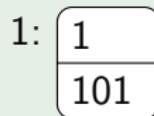
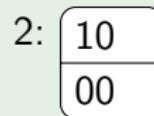
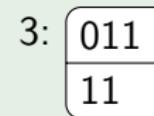
And What Else?

- Here we conclude our discussion of undecidable problems.
- Many more undecidable problems exist.
- In this section, we briefly discuss some further classical results.

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

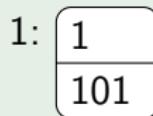
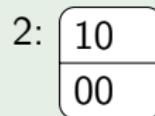
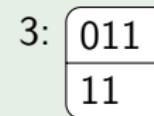


(an infinite number of each kind)

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"



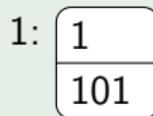
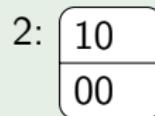
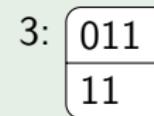
(an infinite number of each kind)

Question: Is there a sequence of dominos such that
the upper and lower row match (= are equal)

Post Correspondence Problem: Example

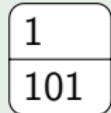
Example (Post Correspondence Problem)

Given: different kinds of "dominos"



(an infinite number of each kind)

Question: Is there a sequence of dominos such that
the upper and lower row match (= are equal)

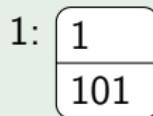
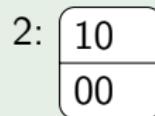
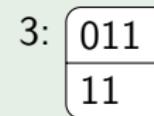


1

Post Correspondence Problem: Example

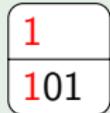
Example (Post Correspondence Problem)

Given: different kinds of "dominos"



(an infinite number of each kind)

Question: Is there a sequence of dominos such that
the upper and lower row match (= are equal)

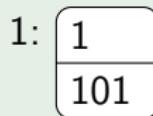
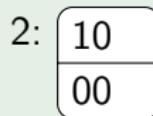
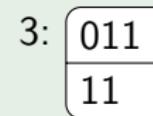


1

Post Correspondence Problem: Example

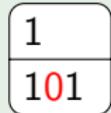
Example (Post Correspondence Problem)

Given: different kinds of "dominos"



(an infinite number of each kind)

Question: Is there a sequence of dominos such that
the upper and lower row match (= are equal)



1

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:	<table border="1"><tr><td>1</td></tr><tr><td>101</td></tr></table>	1	101
1			
101			

2:	<table border="1"><tr><td>10</td></tr><tr><td>00</td></tr></table>	10	00
10			
00			

3:	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11
011			
11			

(an infinite number of each kind)

Question: Is there a sequence of dominos such that
the upper and lower row match (= are equal)

<table border="1"><tr><td>1</td></tr><tr><td>101</td></tr></table>	1	101	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11
1					
101					
011					
11					
1	3				

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:	<table border="1"><tr><td>1</td></tr><tr><td>101</td></tr></table>	1	101
1			
101			

2:	<table border="1"><tr><td>10</td></tr><tr><td>00</td></tr></table>	10	00
10			
00			

3:	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11
011			
11			

(an infinite number of each kind)

Question: Is there a sequence of dominos such that
the upper and lower row match (= are equal)

<table border="1"><tr><td>1</td></tr><tr><td>101</td></tr></table>	1	101	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11
1					
101					
011					
11					
1	3				

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:	<table border="1"><tr><td>1</td></tr><tr><td>101</td></tr></table>	1	101
1			
101			

2:	<table border="1"><tr><td>10</td></tr><tr><td>00</td></tr></table>	10	00
10			
00			

3:	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11
011			
11			

(an infinite number of each kind)

Question: Is there a sequence of dominos such that
the upper and lower row match (= are equal)

<table border="1"><tr><td>1</td></tr><tr><td>101</td></tr></table>	1	101	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11
1					
101					
011					
11					
1	3				

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:	<table border="1"><tr><td>1</td></tr><tr><td>101</td></tr></table>	1	101
1			
101			

2:	<table border="1"><tr><td>10</td></tr><tr><td>00</td></tr></table>	10	00
10			
00			

3:	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11
011			
11			

(an infinite number of each kind)

Question: Is there a sequence of dominos such that
the upper and lower row match (= are equal)

<table border="1"><tr><td>1</td></tr><tr><td>101</td></tr></table>	1	101	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11
1					
101					
011					
11					
1	3				

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:	<table border="1"><tr><td>1</td></tr><tr><td>101</td></tr></table>	1	101
1			
101			

2:	<table border="1"><tr><td>10</td></tr><tr><td>00</td></tr></table>	10	00
10			
00			

3:	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11
011			
11			

(an infinite number of each kind)

Question: Is there a sequence of dominos such that
the upper and lower row match (= are equal)

<table border="1"><tr><td>1</td></tr><tr><td>101</td></tr></table>	1	101	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11	<table border="1"><tr><td>10</td></tr><tr><td>00</td></tr></table>	10	00
1								
101								
011								
11								
10								
00								
1	3	2						

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:	<table border="1"><tr><td>1</td></tr><tr><td>101</td></tr></table>	1	101
1			
101			

2:	<table border="1"><tr><td>10</td></tr><tr><td>00</td></tr></table>	10	00
10			
00			

3:	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11
011			
11			

(an infinite number of each kind)

Question: Is there a sequence of dominos such that
the upper and lower row match (= are equal)

<table border="1"><tr><td>1</td></tr><tr><td>101</td></tr></table>	1	101	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11	<table border="1"><tr><td>10</td></tr><tr><td>00</td></tr></table>	10	00	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11
1											
101											
011											
11											
10											
00											
011											
11											
1	3	2	3								

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:	<table border="1"><tr><td>1</td></tr><tr><td>101</td></tr></table>	1	101
1			
101			

2:	<table border="1"><tr><td>10</td></tr><tr><td>00</td></tr></table>	10	00
10			
00			

3:	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11
011			
11			

(an infinite number of each kind)

Question: Is there a sequence of dominos such that
the upper and lower row match (= are equal)

<table border="1"><tr><td>1</td></tr><tr><td>101</td></tr></table>	1	101	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11	<table border="1"><tr><td>10</td></tr><tr><td>00</td></tr></table>	10	00	<table border="1"><tr><td>011</td></tr><tr><td>11</td></tr></table>	011	11
1											
101											
011											
11											
10											
00											
011											
11											
1	3	2	3								

Post Correspondence Problem: Definition

Definition (Post Correspondence Problem PCP)

Given: Finite sequence of pairs of words

$(t_1, b_1), (t_2, b_2), \dots, (t_k, b_k)$, where $t_i, b_i \in \Sigma^+$
(for an arbitrary alphabet Σ)

Question: Is there a sequence

$i_1, i_2, \dots, i_n \in \{1, \dots, k\}$, $n \geq 1$,
with $t_{i_1} t_{i_2} \dots t_{i_n} = b_{i_1} b_{i_2} \dots b_{i_n}$?

Post Correspondence Problem: Definition

Definition (Post Correspondence Problem PCP)

Given: Finite sequence of pairs of words

$(t_1, b_1), (t_2, b_2), \dots, (t_k, b_k)$, where $t_i, b_i \in \Sigma^+$
(for an arbitrary alphabet Σ)

Question: Is there a sequence

$i_1, i_2, \dots, i_n \in \{1, \dots, k\}$, $n \geq 1$,
with $t_{i_1} t_{i_2} \dots t_{i_n} = b_{i_1} b_{i_2} \dots b_{i_n}$?

Theorem (Undecidability of PCP)

PCP is *undecidable*.

Undecidable Grammar Problems

Some Grammar Problems

Given context-free grammars G_1 and G_2 , ...

- ... is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2) = \emptyset$?
- ... is $|\mathcal{L}(G_1) \cap \mathcal{L}(G_2)| = \infty$?
- ... is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2)$ context-free?
- ... is $\mathcal{L}(G_1) \subseteq \mathcal{L}(G_2)$?
- ... is $\mathcal{L}(G_1) = \mathcal{L}(G_2)$?

Given a context-sensitive grammar G , ...

- ... is $\mathcal{L}(G) = \emptyset$?
- ... is $|\mathcal{L}(G)| = \infty$?

↔ all undecidable by reduction from PCP

(see Schöning, Chapter 2.8)

Gödel's First Incompleteness Theorem (1)

Definition (Arithmetic Formula)

An **arithmetic formula** is a closed predicate logic formula using

- constant symbols 0 and 1,
- function symbols + and \cdot , and
- equality (=) as the only relation symbols.

It is called **true** if it is true under the usual interpretation of 0, 1, + and \cdot over \mathbb{N}_0 .

German: arithmetische Formel

Beispiel: $\forall x \exists y \forall z (((x \cdot y) = z) \wedge ((1 + x) = (x \cdot y)))$

Gödel's First Incompleteness Theorem (2)

Gödel's First Incompleteness Theorem

The problem of **deciding if a given arithmetic formula is true** is undecidable.

Moreover, neither it nor its complement are Turing-recognizable.

As a consequence, there exists no sound and complete proof system for arithmetic formulas.

German: erster Gödelscher Unvollständigkeitssatz

Questions

Summary

Summary

Rice's theorem:

- “In general one cannot determine algorithmically what a given program (or Turing machine) computes.”

Summary

Rice's theorem:

- “In general one cannot determine algorithmically what a given program (or Turing machine) computes.”

How to Prove Undecidability?

- statements on the computed function of a TM/an algorithm
- other problems

Summary

Rice's theorem:

- “In general one cannot determine algorithmically what a given program (or Turing machine) computes.”

How to Prove Undecidability?

- statements on the computed function of a TM/an algorithm
→ easiest with Rice' theorem
- other problems

Summary

Rice's theorem:

- “In general one cannot determine algorithmically what a given program (or Turing machine) computes.”

How to Prove Undecidability?

- statements on the computed function of a TM/an algorithm
→ easiest with Rice' theorem
- other problems
 - directly with the definition of undecidability
→ usually quite complicated

Summary

Rice's theorem:

- “In general one cannot determine algorithmically what a given program (or Turing machine) computes.”

How to Prove Undecidability?

- statements on the computed function of a TM/an algorithm
→ easiest with Rice' theorem
- other problems
 - directly with the definition of undecidability
→ usually quite complicated
 - reduction from an undecidable problem, e.g.
→ halting problem (H)
→ Post correspondence problem (PCP)

What's Next?

contents of this course:

- A. **background ✓**
 - ▷ mathematical foundations and proof techniques
- B. **automata theory and formal languages ✓**
 - ▷ What is a computation?
- C. **Turing computability**
 - ▷ What can be computed at all?
- D. **complexity theory**
 - ▷ What can be computed efficiently?
- E. **more computability theory**
 - ▷ Other models of computability

What's Next?

contents of this course:

- A. background ✓
 - ▷ mathematical foundations and proof techniques
- B. automata theory and formal languages ✓
 - ▷ What is a computation?
- C. Turing computability ✓
 - ▷ What can be computed at all?
- D. complexity theory
 - ▷ What can be computed efficiently?
- E. more computability theory
 - ▷ Other models of computability

Quiz

kahoot.it