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Rice’s Theorem (1)

We have shown that the following problems are undecidable:

halting problem H
halting problem on empty tape H0

Many more results of this type could be shown.

Instead, we prove a much more general result,
Rice’s theorem, which shows that a very large class
of different problems are undecidable.

Rice’s theorem can be summarized informally as:
every non-trivial question about what a given Turing machine
computes is undecidable.
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Rice’s Theorem (2)

Theorem (Rice’s Theorem)

Let R be the class of all computable partial functions.
Let S be an arbitrary subset of R except S = ∅ or S = R.
Then the language

C (S) = {w ∈ {0, 1}∗ | the function computed by Mw is in S}

is undecidable.

German: Satz von Rice

Question: why the restriction to S 6= ∅ and S 6= R?

Extension (without proof): in most cases neither C (S) nor C (S) is
Turing-recognizable. (But there are sets S for which one of the
two languages is Turing-recognizable.)
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Rice’s Theorem (3)

Proof.

Let Ω be the partial function that is undefined everywhere.

Case distinction:

Case 1: Ω ∈ S
Let q ∈ R \ S be an arbitrary computable partial function
outside of S (exists because S ⊆ R and S 6= R).

Let Q be a Turing machine that computes q. . . .
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Rice’s Theorem (4)

Proof (continued).

We show that H̄0 ≤ C (S).

Consider function f : {0, 1}∗ → {0, 1}∗,
where f (w) is defined as follows:

Construct TM M that first behaves on input y like Mw

on the empty tape (independently of what y is).

Afterwards (if that computation terminates!)
M clears the tape, creates the start configuration of Q
for input y and then simulates Q.

f (w) is the encoding of this TM M

f is total and computable. . . .
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Rice’s Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by f (w)?

Mf (w) computes

{
Ω if Mw does not terminate on ε

q otherwise

For all words w ∈ {0, 1}∗:

w ∈ H0 =⇒ Mw terminates on ε

=⇒ Mf (w) computes the function q

=⇒ the function computed by Mf (w) is not in S
=⇒ f (w) /∈ C (S)

. . .



Rice’s Theorem Outlook Summary

Rice’s Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by f (w)?

Mf (w) computes

{
Ω if Mw does not terminate on ε

q otherwise

For all words w ∈ {0, 1}∗:

w ∈ H0 =⇒ Mw terminates on ε

=⇒ Mf (w) computes the function q

=⇒ the function computed by Mf (w) is not in S
=⇒ f (w) /∈ C (S)

. . .



Rice’s Theorem Outlook Summary

Rice’s Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by f (w)?

Mf (w) computes

{
Ω if Mw does not terminate on ε

q otherwise

For all words w ∈ {0, 1}∗:

w ∈ H0 =⇒ Mw terminates on ε

=⇒ Mf (w) computes the function q

=⇒ the function computed by Mf (w) is not in S
=⇒ f (w) /∈ C (S)

. . .



Rice’s Theorem Outlook Summary

Rice’s Theorem (6)

Proof (continued).

Further:

w /∈ H0 =⇒ Mw does not terminate on ε

=⇒ Mf (w) computes the function Ω

=⇒ the function computed by Mf (w) is in S
=⇒ f (w) ∈ C (S)

Together this means: w /∈ H0 iff f (w) ∈ C (S),
thus w ∈ H̄0 iff f (w) ∈ C (S).

Therefore, f is a reduction of H̄0 to C (S).

Since H0 is undecidable, H̄0 is also undecidable.

We can conclude that C (S) is undecidable. . . .
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Rice’s Theorem (7)

Proof (continued).

Case 2: Ω /∈ S

Analogous to Case 1 but this time choose q ∈ S.

The corresponding function f then reduces H0 to C (S).

Thus, it also follows in this case that C (S) is undecidable.
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Rice’s Theorem: Consequences

Was it worth it?
We can now conclude immediately that (for example)
the following informally specified problems are all undecidable:

Does a given TM compute a constant function?

Does a given TM compute a total function
(i. e. will it always terminate, and in particular terminate
in a “correct” configuration)?

Is the output of a given TM always longer than its input?

Does a given TM compute the identity function?

Does a given TM compute the computable function f ?

. . .
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Rice’s Theorem: Examples

Does a given TM compute a constant function?
S = {f | f is total and computable and
S = {f | for all x , y in the domain of f : f (x) = f (y)}
Does a given TM compute a total function?
S = {f | f is total and computable}
Does a given TM compute the identity function?
S = {f | f (x) = x for all x}
Does a given TM add two natural numbers?
S = {f : N2

0 → N0 | f (x , y) = x + y}
Does a given TM compute the computable function f ?
S = {f }
(full automization of software verification is impossible)
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Exercise

This was an exam question in 2019.

Is the following informally described problem
decidable? Give a brief justification.

Given a deterministic Turing machine M, is the
language recognized by M regular?
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Rice’s Theorem: Pitfalls

S = {f | f can be computed by a DTM
S = {f | with an even number of states}
Rice’s theorem not applicable because S = R
S = {f : {0, 1}∗ →p {0, 1} | f (w) = 1 iff
S = {f : {0, 1}∗ →p {0, 1} | Mw does not terminate on ε}?
Rice’s theorem not applicable because S 6⊆ R
Show that {w | Mw traverses all states on every input}
is undecidable.
Rice’s theorem not directly applicable because not a semantic
property (the function computed by Mw can also be
computed by a TM that does not traverse all states)
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Rice’s Theorem: Practical Applications

Undecidable due to Rice’s theorem + a small reduction:

automated debugging:
Can a given variable ever receive a null value?
Can a given assertion in a program ever trigger?
Can a given buffer ever overflow?

virus scanners and other software security analysis:
Can this code do something harmful?
Is this program vulnerable to SQL injections?
Can this program lead to a privilege escalation?

optimizing compilers:
Is this dead code?
Is this a constant expression?
Can pointer aliasing happen here?
Is it safe to parallelize this code path?

parallel program analysis:
Is a deadlock possible here?
Can a race condition happen here?
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Questions

Questions?
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Further Undecidable Problems
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And What Else?

Here we conclude our discussion of undecidable problems.

Many more undecidable problems exist.

In this section, we briefly discuss some further classical results.
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Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of ”‘dominos”’

1

101

1: 10

00

2: 011

11

3:

(an infinite number of each kind)

Question: Is there a sequence of dominos such that

the upper and lower row match (= are equal)

1

101

1

011

11

3

10

00

2

011

11

3
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Post Correspondence Problem: Definition

Definition (Post Correspondence Problem PCP)

Given: Finite sequence of pairs of words
(t1, b1), (t2, b2), . . . , (tk , bk), where ti , bi ∈ Σ+

(for an arbitrary alphabet Σ)

Question: Is there a sequence
i1, i2, . . . , in ∈ {1, . . . , k}, n ≥ 1,
with ti1ti2 . . . tin = bi1bi2 . . . bin?

Theorem (Undecidability of PCP)

PCP is undecidable.
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Undecidable Grammar Problems

Some Grammar Problems

Given context-free grammars G1 and G2, . . .

. . . is L(G1) ∩ L(G2) = ∅?

. . . is |L(G1) ∩ L(G2)| =∞?

. . . is L(G1) ∩ L(G2) context-free?

. . . is L(G1) ⊆ L(G2)?

. . . is L(G1) = L(G2)?

Given a context-sensitive grammar G , . . .

. . . is L(G ) = ∅?

. . . is |L(G )| =∞?

 all undecidable by reduction from PCP

 

(see Schöning, Chapter 2.8)
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Gödel’s First Incompleteness Theorem (1)

Definition (Arithmetic Formula)

An arithmetic formula is a closed predicate logic formula using

constant symbols 0 and 1,

function symbols + and ·, and

equality (=) as the only relation symbols.

It is called true if it is true under the usual interpretation
of 0, 1, + and · over N0.

German: arithmetische Formel

Beispiel: ∀x∃y∀z(((x · y) = z) ∧ ((1 + x) = (x · y)))
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Gödel’s First Incompleteness Theorem (2)

Gödel’s First Incompleteness Theorem

The problem of deciding if a given arithmetic formula is true
is undecidable.

Moreover, neither it nor its complement are Turing-recognizable.

As a consequence, there exists no sound and complete
proof system for arithmetic formulas.

German: erster Gödelscher Unvollständigkeitssatz
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Questions

Questions?
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Summary

Rice’s theorem:

“In general one cannot determine algorithmically

“

what a given program (or Turing machine) computes.”

How to Prove Undecidability?

statements on the computed function of a TM/an algorithm

→ easiest with Rice’ theorem

other problems

directly with the definition of undecidability
→ usually quite complicated
reduction from an undecidable problem, e.g.
→ halting problem (H)
→ Post correspondence problem (PCP)
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What’s Next?

contents of this course:

A. background X
. mathematical foundations and proof techniques

B. automata theory and formal languages X
. What is a computation?

C. Turing computability

X

. What can be computed at all?

D. complexity theory
. What can be computed efficiently?

E. more computability theory
. Other models of computability
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Quiz
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