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Rice's Theorem (1)

m We have shown that the following problems are undecidable:
m halting problem H
m halting problem on empty tape Hy

m Many more results of this type could be shown.

m Instead, we prove a much more general result,
Rice's theorem, which shows that a very large class
of different problems are undecidable.
m Rice's theorem can be summarized informally as:
every non-trivial question about what a given Turing machine
computes is undecidable.



Rice's Theorem Outlook Summary

00@00000000000

Rice's Theorem (2)

Theorem (Rice's Theorem)

Let R be the class of all computable partial functions.
Let S be an arbitrary subset of R except S = () or S = R.
Then the language

C(S) = {w € {0, 1}" | the function computed by M,, is in S}

is undecidable.

German: Satz von Rice

Question: why the restriction to S # () and S # R?

Extension (without proof): in most cases neither C(S) nor C(S) is
Turing-recognizable. (But there are sets S for which one of the
two languages is Turing-recognizable.)
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Rice's Theorem (3)

Let Q be the partial function that is undefined everywhere.
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Rice's Theorem (3)

Let Q be the partial function that is undefined everywhere.

Case distinction:

Case 1: QeS8

Let g € R\ S be an arbitrary computable partial function
outside of S (exists because S C R and S # R).
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Rice's Theorem (3)

Let Q be the partial function that is undefined everywhere.
Case distinction:

Case 1: QeS8

Let g € R\ S be an arbitrary computable partial function
outside of S (exists because S C R and S # R).

Let @ be a Turing machine that computes q.
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Rice's Theorem (4)

Proof (continued).

We show that Hy < C(S).
Consider function f : {0,1}* — {0,1}*,
where f(w) is defined as follows:

m Construct TM M that first behaves on input y like M,
on the empty tape (independently of what y is).

m Afterwards (if that computation terminates!)
M clears the tape, creates the start configuration of @
for input y and then simulates Q.

m f(w) is the encoding of this TM M
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Rice's Theorem (4)

Proof (continued).

We show that Hy < C(S).
Consider function f : {0,1}* — {0,1}*,
where f(w) is defined as follows:
m Construct TM M that first behaves on input y like M,
on the empty tape (independently of what y is).
m Afterwards (if that computation terminates!)
M clears the tape, creates the start configuration of @
for input y and then simulates Q.
m f(w) is the encoding of this TM M

f is total and computable.
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Rice's Theorem (5)

Proof (continued).
Which function is computed by the TM encoded by f(w)?
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Proof (continued).
Which function is computed by the TM encoded by f(w)?

Q if M,, does not terminate on ¢
Mg (w) computes )
g otherwise
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Rice's Theorem (5)

Proof (continued).
Which function is computed by the TM encoded by f(w)?

Q if M,, does not terminate on ¢

Mg (w) computes { )
g otherwise

For all words w € {0, 1}*:

w € Hy =— M,, terminates on &
= Mg (,) computes the function q

= the function computed by M¢(, is not in §
— f(w) ¢ C(5)
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Rice’s Theorem (6)

Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £
== the function computed by M, isin S
— f(w) € C(S)
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Rice's Theorem (6)

Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £
== the function computed by M, isin S
— f(w) € C(S)

Together this means: w ¢ Hp iff f(w) € C(S),
thus w € Hy iff f(w) € C(S).
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Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £
== the function computed by M, isin S
— f(w) € C(S)

Together this means: w ¢ Hp iff f(w) € C(S),
thus w € Hy iff f(w) € C(S).

Therefore, f is a reduction of Hy to C(S).
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Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £
== the function computed by M, isin S
— f(w) € C(S)

Together this means: w ¢ Hp iff f(w) € C(S),
thus w € Hy iff f(w) € C(S).

Therefore, f is a reduction of Hy to C(S).

Since Hp is undecidable, Hp is also undecidable.
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Rice's Theorem (6)

Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £

== the function computed by M, isin S
— f(w) € C(S)

Together this means: w ¢ Hp iff f(w) € C(S),
thus w € Hy iff f(w) € C(S).

Therefore, f is a reduction of Hy to C(S).

Since Hp is undecidable, Hp is also undecidable.

We can conclude that C(S) is undecidable.
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Rice's Theorem (7)

Proof (continued).
Case2: Q¢S
Analogous to Case 1 but this time choose g € S.

The corresponding function f then reduces Hy to C(S).

Thus, it also follows in this case that C(S) is undecidable. O
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Rice's Theorem: Consequences

Was it worth it?
We can now conclude immediately that (for example)
the following informally specified problems are all undecidable:

m Does a given TM compute a constant function?

m Does a given TM compute a total function
(i.e. will it always terminate, and in particular terminate
in a “correct” configuration)?

Is the output of a given TM always longer than its input?
Does a given TM compute the identity function?
Does a given TM compute the computable function 77
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Rice's Theorem: Examples

m Does a given TM compute a constant function?
S = {f | f is total and computable and
for all x,y in the domain of f : f(x) = f(y)}
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Rice's Theorem: Examples

m Does a given TM compute a constant function?
S = {f | f is total and computable and
for all x,y in the domain of f : f(x) = f(y)}

m Does a given TM compute a total function?
S = {f | f is total and computable}
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Rice's Theorem: Examples

m Does a given TM compute a constant function?
S = {f | f is total and computable and
for all x,y in the domain of f : f(x) = f(y)}

m Does a given TM compute a total function?
S = {f | f is total and computable}

m Does a given TM compute the identity function?
S ={f | f(x) = x for all x}
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Rice's Theorem: Examples

m Does a given TM compute a constant function?
S = {f | f is total and computable and
for all x,y in the domain of f : f(x) = f(y)}

m Does a given TM compute a total function?
S = {f | f is total and computable}

m Does a given TM compute the identity function?
S ={f | f(x) = x for all x}

m Does a given TM add two natural numbers?
S={f:N2 = Ng|f(x,y)=x+y}
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Rice's Theorem: Examples

m Does a given TM compute a constant function?
S = {f | f is total and computable and
for all x,y in the domain of f : f(x) = f(y)}

m Does a given TM compute a total function?
S = {f | f is total and computable}

m Does a given TM compute the identity function?
S ={f | f(x) = x for all x}

m Does a given TM add two natural numbers?
S={f:N2 = Ng|f(x,y)=x+y}

m Does a given TM compute the computable function 7?
S ={f}
(full automization of software verification is impossible)
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Exercise

This was an exam question in 2019.

Is the following informally described problem

D

decidable? Give a brief justification. ?,
s

Given a deterministic Turing machine M, is the Q

language recognized by M regular?
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Rice's Theorem: Pitfalls

m S ={f|f can be computed by a DTM
with an even number of states}
Rice's theorem not applicable because S =R
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Rice's Theorem: Pitfalls

m §S={f|f can be computed by a DTM
with an even number of states}
Rice's theorem not applicable because S =R
m S={f:{0,1}* —, {0,1} | f(w) =1 iff
M,, does not terminate on €}?
Rice's theorem not applicable because S € R
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Rice's Theorem: Pitfalls

m §S={f|f can be computed by a DTM
with an even number of states}
Rice's theorem not applicable because S =R
m S={f:{0,1}* —, {0,1} | f(w) =1 iff
M,, does not terminate on €}?
Rice's theorem not applicable because S € R

m Show that {w | M,, traverses all states on every input}
is undecidable.
Rice's theorem not directly applicable because not a semantic
property (the function computed by M,, can also be
computed by a TM that does not traverse all states)
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Rice's Theorem: Practical Applications

Undecidable due to Rice's theorem + a small reduction:
m automated debugging:
m Can a given variable ever receive a null value?
m Can a given assertion in a program ever trigger?
m Can a given buffer ever overflow?
m virus scanners and other software security analysis:
m Can this code do something harmful?
m Is this program vulnerable to SQL injections?
m Can this program lead to a privilege escalation?
m optimizing compilers:
m Is this dead code?
m |s this a constant expression?
m Can pointer aliasing happen here?
m Is it safe to parallelize this code path?
m parallel program analysis:
m Is a deadlock possible here?
m Can a race condition happen here?
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Further Undecidable Problems
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And What Else?

m Here we conclude our discussion of undecidable problems.
m Many more undecidable problems exist.

m In this section, we briefly discuss some further classical results.
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Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of " ‘dominos”’

1: 2:(10 3: (011
00 11

(an infinite number of each kind)
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Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of " ‘dominos”’

1: 2:(10 3: (011
00 11

(an infinite number of each kind)

Question: Is there a sequence of dominos such that

the upper and lower row match (= are equal)
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Example (Post Correspondence Problem)
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(an infinite number of each kind)
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Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of " ‘dominos”’

1: 2:(10 3: (011
00 11

(an infinite number of each kind)

Question: Is there a sequence of dominos such that
the upper and lower row match (= are equal)
(1 )fo11 |(10 ]
(101 J{11 J{oo |
1

3 2
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Example (Post Correspondence Problem)

Given: different kinds of " ‘dominos”’

1: 2:(10 3: (011
00 11

(an infinite number of each kind)

Question: Is there a sequence of dominos such that

the upper and lower row match (= are equal)

(1 )[o11 |(10 ][o11 |
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Example (Post Correspondence Problem)

Given: different kinds of " ‘dominos”’

1: 2:(10 3: (011
00 11

(an infinite number of each kind)

Question: Is there a sequence of dominos such that

the upper and lower row match (= are equal)

(1 )[o11 |(10 ][o11 |
(101 J{11 Jloo J{11 |
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3 2 3
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Post Correspondence Problem: Definition

Definition (Post Correspondence Problem PCP)

Given: Finite sequence of pairs of words
(tl, bl), (t2, bz), ceey (tk, bk), where t;, b; € ¥+
(for an arbitrary alphabet ¥)

Question: Is there a sequence
My, ip € {1,...,/(}, n>1,
with titi, ... L, = b,'1 b,'2 o b,‘n?
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Post Correspondence Problem: Definition

Definition (Post Correspondence Problem PCP)

Given: Finite sequence of pairs of words
(tl, bl), (t2, bz), ceey (tk, bk), where t;, b; € ¥+
(for an arbitrary alphabet ¥)

Question: Is there a sequence
My, ip € {1,...,/(}, n>1,
with titi, ... L, = b,'1 b,'2 o b,‘n?

Theorem (Undecidability of PCP)

PCP is undecidable.
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Summary

Undecidable Grammar Problems

Some Grammar Problems

Given context-free grammars Gy and Gp, ...
is L(G) N L(Gy) = 07

s [L(G1) N L(Gy)| = 007

.is L(G1) N L(Gy) context-free?
is L(G1) € L(Gy)?

is L(G1) = L(Go)?

Given a context-sensitive grammar G, ...

.is L(G) = 07?
s |L(G)] = 007

~ all undecidable by reduction from PCP
(see Schoning, Chapter 2.8)
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Godel'’s First Incompleteness Theorem (1)

Definition (Arithmetic Formula)

An arithmetic formula is a closed predicate logic formula using
m constant symbols 0 and 1,
m function symbols + and -, and
m equality (=) as the only relation symbols.

It is called true if it is true under the usual interpretation
of 0, 1, 4+ and - over Np.

German: arithmetische Formel

Beispiel: Vx3yVz(((x-y) = 2) A((1 +x) = (x - y)))
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Godel'’s First Incompleteness Theorem (2)

Godel’s First Incompleteness Theorem

The problem of deciding if a given arithmetic formula is true
is undecidable.

Moreover, neither it nor its complement are Turing-recognizable.

As a consequence, there exists no sound and complete
proof system for arithmetic formulas.

German: erster Godelscher Unvollstandigkeitssatz
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Rice's theorem:

m “In general one cannot determine algorithmically
what a given program (or Turing machine) computes.”
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Rice's theorem:

m “In general one cannot determine algorithmically
what a given program (or Turing machine) computes.”

How to Prove Undecidability?

m statements on the computed function of a TM/an algorithm
— easiest with Rice’ theorem

m other problems

m directly with the definition of undecidability
— usually quite complicated

m reduction from an undecidable problem, e.g.
— halting problem (H)
— Post correspondence problem (PCP)

0e00
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contents of this course:

A.

background v/
> mathematical foundations and proof techniques

. automata theory and formal languages v/

> What is a computation?
Turing computability
> What can be computed at all?

complexity theory
> What can be computed efficiently?

more computability theory
> Other models of computability
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