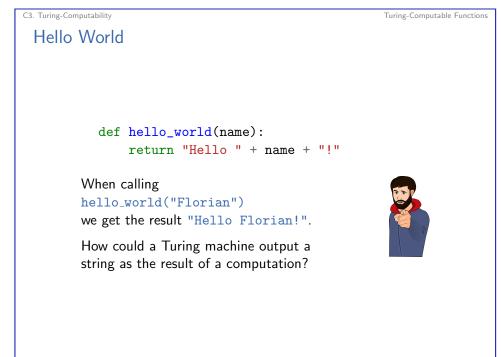


C3. Turing-Computability

Turing-Computable Functions

C3.1 Turing-Computable Functions

Theory of Computer Science May 22, 2022 — C3. Turing-Computability		
C3.1 Turing-Computable Functions		
C3.2 Decidability vs. Computability		
C3.3 Summary		
Gabriele Röger (University of Basel) Theory of Computer Science	May 22, 2022	2 / 26



C3. Turing-Computability

Turing-Computable Functions

Church-Turing Thesis Revisited

Church-Turing Thesis

All functions that can be computed in the intuitive sense can be computed by a Turing machine.

- Talks about arbitrary functions that can be computed in the intutive sense.
- So far, we have only considered recognizability and decidability: Is a word in a language, yes or no?
- We now will consider function values beyond yes or no (accept or reject).
- \blacktriangleright \Rightarrow consider the tape content when the TM accepted.

Theory of Computer Science

Gabriele Röger (University of Basel)

C3. Turing-Computability

Turing-Computable Functions

May 22, 2022

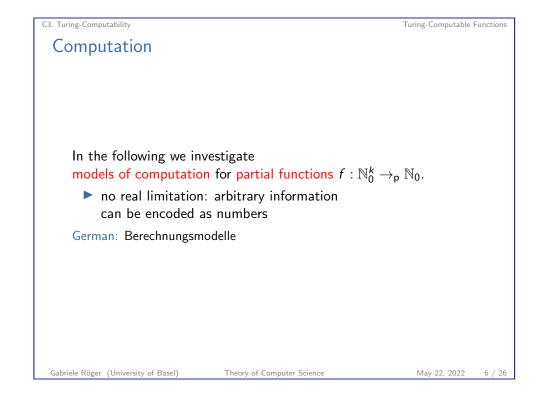
5 / 26

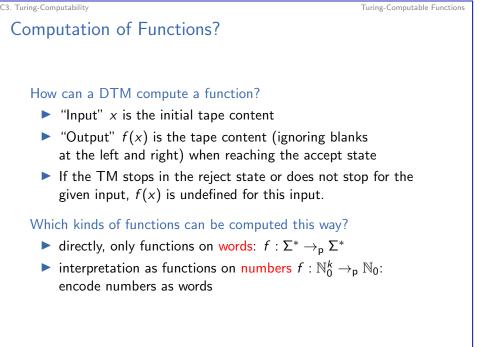
Reminder: Configurations and Computation Steps

How do Turing Machines Work?

- configuration: $\langle \alpha, q, \beta \rangle$ with $\alpha \in \Gamma^*$, $q \in Q$, $\beta \in \Gamma^+$
- one computation step: c ⊢ c' if one computation step can turn configuration c into configuration c'
- multiple computation steps: c ⊢* c' if 0 or more computation steps can turn configuration c into configuration c' (c = c₀ ⊢ c₁ ⊢ c₂ ⊢ ··· ⊢ c_{n-1} ⊢ c_n = c', n ≥ 0)

(Definition of \vdash , i.e., how a computation step changes the configuration, is not repeated here. \rightsquigarrow Chapter B10)





Gabriele Röger (University of Basel)

Turing-Computable Functions

Turing Machines: Computed Function

Definition (Function Computed by a Turing Machine)

A DTM $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}} \rangle$ computes the (partial) function $f : \Sigma^* \rightarrow_p \Sigma^*$ for which for all $x, y \in \Sigma^*$:

 $f(x) = y \text{ iff } \langle \varepsilon, q_0, x \rangle \vdash^* \langle \varepsilon, q_{\text{accept}}, y \Box \dots \Box \rangle.$

(special case: initial configuration $\langle \varepsilon, q_0, \Box \rangle$ if $x = \varepsilon$)

German: DTM berechnet f

- ▶ What happens if the computation does not reach q_{accept}?
- ▶ What happens if symbols from $\Gamma \setminus \Sigma$ (e.g., \Box) occur in *y*?
- What happens if the read-write head is not at the first tape cell when accepting?

Theory of Computer Science

Is f uniquely defined by this definition? Why?

Gabriele Röger (University of Basel)

May 22, 2022

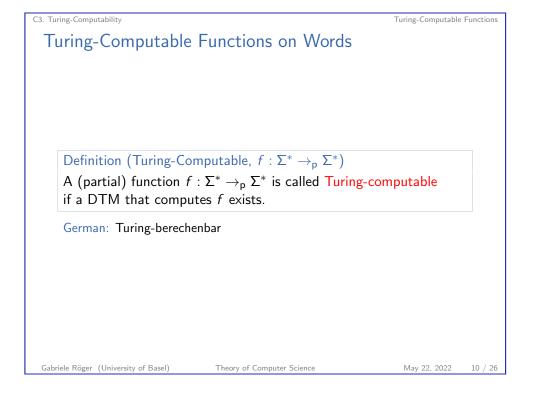
C3. Turing-Computability

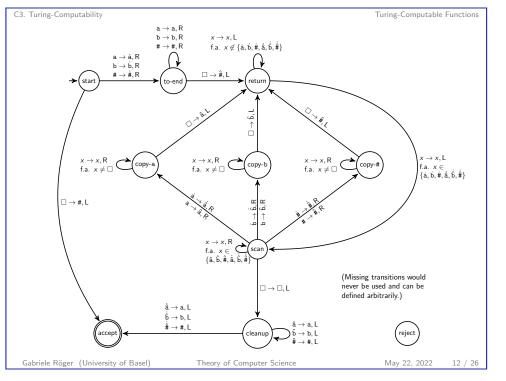
Turing-Computable Functions

9 / 26

Example: Turing-Computable Functions on Words

Example Let $\Sigma = \{a, b, \#\}$. The function $f : \Sigma^* \rightarrow_p \Sigma^*$ with f(w) = w # w for all $w \in \Sigma^*$ is Turing-computable. Idea: \rightsquigarrow blackboard





Gabriele Röger (University of Basel)

May 22, 2022

13 / 26

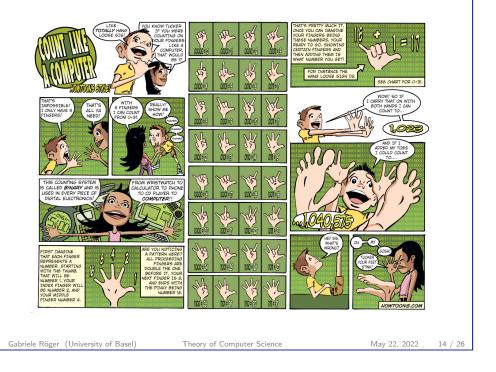
C3. Turing-Computability

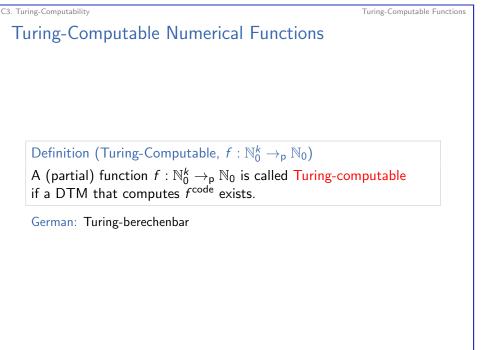
- We now transfer the concept to partial functions f : N^k₀ →_p N₀.
- Idea:
 - To represent a number as a word, we use its binary representation (= a word over {0,1}).
 - To represent tuples of numbers, we separate the binary representations with symbol #.
- ► For example: (5, 2, 3) becomes 101#10#11

Gabriele Röger (University of Basel)

Theory of Computer Science

C3. Turing-Computability Encoding Numbers as Words Definition (Encoded Function) Let $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$ be a (partial) function. The encoded function f^{code} of f is the partial function $f^{code} : \Sigma^* \to_p \Sigma^*$ with $\Sigma = \{0, 1, \#\}$ and $f^{code}(w) = w'$ iff • there are $n_1, \ldots, n_k, n' \in \mathbb{N}_0$ such that • $f(n_1, \ldots, n_k) = n'$, • $w = bin(n_1)\# \ldots \# bin(n_k)$ and • w' = bin(n'). Here $bin : \mathbb{N}_0 \to \{0, 1\}^*$ is the binary encoding (e.g., bin(5) = 101). German: kodierte Funktion Example: f(5, 2, 3) = 4 corresponds to $f^{code}(101\#10\#11) = 100$.





Turing-Computable Functions

Exercise

The addition of natural numbers $+ : \mathbb{N}_0^2 \to \mathbb{N}_0$ is Turing-computable. You have a TM *M* that computes $+^{\text{code}}$.

You want to use M to compute the sum 3 + 2. What is your input to M?

Gabriele Röger (University of Basel)

Theory of Computer Science

C3. Turing-Computability

Turing-Computable Functions

17 / 26

May 22, 2022

The Turing machine for *succ* works as follows:

(Details of marking the first tape position ommitted)

- Check that the input is a valid binary number:
 - If the input is not a single symbol 0 but starts with a 0, reject.
 - ▶ If the input contains symbol #, reject.
- Ø Move the head onto the last symbol of the input.
- While you read a 1 and you are not at the first tape position, replace it with a 0 and move the head one step to the left.
- Opending on why the loop in stage 3 terminated:
 - If you read a 0, replace it with a 1, move the head to the left end of the tape and accept.
 - If you read a 1 at the first tape position, move every non-blank symbol on the tape one position to the right, write a 1 in the first tape position and accept.

C3. Turing-Computability

Example: Turing-Computable Numerical Function

Example

The following numerical functions are Turing-computable:

- $succ: \mathbb{N}_0 \rightarrow_p \mathbb{N}_0$ with succ(n) := n+1

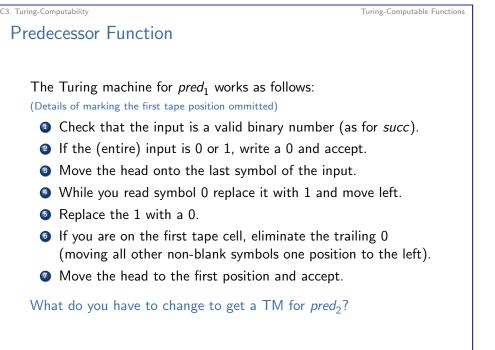
How does incrementing and decrementing binary numbers work?

Theory of Computer Science

Gabriele Röger (University of Basel)

May 22, 2022 18 / 26

Turing-Computable Functions



More Turing-Computable Numerical Functions

Example

The following numerical functions are Turing-computable: • $add: \mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with $add(n_1, n_2) := n_1 + n_2$ • $sub: \mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with $sub(n_1, n_2) := max\{n_1 - n_2, 0\}$ • $mul: \mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with $mul(n_1, n_2) := n_1 \cdot n_2$ • $div: \mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with $div(n_1, n_2) := \begin{cases} \left\lceil \frac{n_1}{n_2} \right\rceil & \text{if } n_2 \neq 0 \\ \text{undefined} & \text{if } n_2 = 0 \end{cases}$ \rightsquigarrow sketch? Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2022 21/26

C3. Turing-Computability

Decidability vs. Computability

Decidability as Computability

Theorem

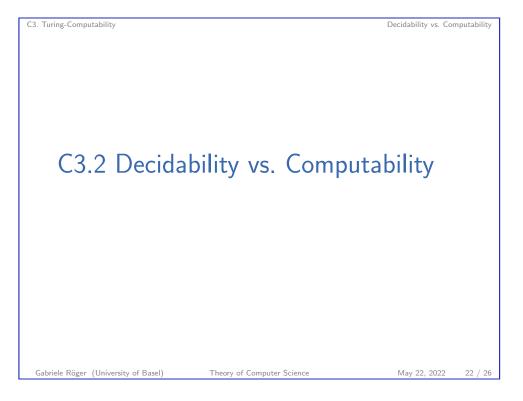
A language $L \subseteq \Sigma^*$ is decidable iff $\chi_L : \Sigma^* \to \{0, 1\}$, the characteristic function of L, is computable.

Here, for all $w \in \Sigma^*$:

$$\chi_L(w) := egin{cases} 1 & \textit{if } w \in L \ 0 & \textit{if } w \notin L \end{cases}$$

Proof sketch.

" \Rightarrow " Let *M* be a DTM for *L*. Construct a DTM *M*' that simulates *M* on the input. If *M* accepts, *M*' writes a 1 on the tape. If *M* rejects, *M*' writes a 0 on the tape. Afterwards *M*' accepts. " \Leftarrow " Let *C* be a DTM that computes χ_L . Construct a DTM *C*' that simulates *C* on the input. If the output of *C* is 1 then *C*' accepts, otherwise it rejects.



C3. Turing-Computability

Decidability vs. Computability

Turing-recognizable Languages and Computability

Theorem

A language $L \subseteq \Sigma^*$ is Turing-recognizable iff the following function $\chi'_L : \Sigma^* \to_p \{0, 1\}$ is computable.

Here, for all $w \in \Sigma^*$:

$$\chi'_L(w) = egin{cases} 1 & ext{if } w \in L \ undefined & ext{if } w
otin L \end{cases}$$

Proof sketch.

" \Rightarrow " Let *M* be a DTM for *L*. Construct a DTM *M*' that simulates *M* on the input. If *M* accepts, *M*' writes a 1 on the tape and accepts. Otherwise it enters an infinite loop.

" \Leftarrow " Let *C* be a DTM that computes χ'_L . Construct a DTM *C*' that simulates *C* on the input. If *C* accepts with output 1 then *C*' accepts, otherwise it enters an infinite loop.

Theory of Computer Science

24 / 26

