
Theory of Computer Science
C2. The Halting Problem

Gabriele Röger

University of Basel

April 25/May 2, 2022

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Turing-recognizable vs. decidable

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Plan for this Chapter

We will first revisit the notions Turing-recognizable and
Turing-decidable and identify a connection between the two
concepts.

Then we will get to know an important undecidable problem,
the halting problem.

We show that it is Turing-recognizable. . .

. . . but not Turing-decidable.

From these results we can conclude that there are languages
that are not Turing-recognizable.

Some of the postponed results on the closure and decidability
properties of type 0 languages are direct implications our
findings.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Reminder: Turing-recognizable and Turing-decidable

Definition (Turing-recognizable Language)

We call a language Turing-recognizable if some deterministic
Turing machine recognizes it.

A Turing machine that halts on all inputs (entering qreject or
qaccept) is a decider. A decider that recognizes some language also
is said to decide the language.

Definition (Turing-decidable Language)

We call a language Turing-decidable (or decidable) if some
deterministic Turing machine decides it.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Reminder: Turing-recognizable and Turing-decidable

Definition (Turing-recognizable Language)

We call a language Turing-recognizable if some deterministic
Turing machine recognizes it.

A Turing machine that halts on all inputs (entering qreject or
qaccept) is a decider. A decider that recognizes some language also
is said to decide the language.

Definition (Turing-decidable Language)

We call a language Turing-decidable (or decidable) if some
deterministic Turing machine decides it.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Intuition

Are these two definitions meaningfully different? Yes!

Case

(Turing-)decidable:

w

accept

reject

Turing-recognizable

w

accept

???

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Intuition

Are these two definitions meaningfully different? Yes!

Case

(Turing-)decidable:

w

accept

reject

Turing-recognizable

w

accept

???

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Intuition

Are these two definitions meaningfully different? Yes!

Case 1: w ∈ L

(Turing-)decidable:

w

accept

reject

Turing-recognizable

w

accept

???

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Intuition

Are these two definitions meaningfully different? Yes!

Case 2: w /∈ L

(Turing-)decidable:

w

accept

reject

Turing-recognizable

w

accept

???

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Connection Turing-recognizable and Turing-decidable (1)

Reminder: For language L, we write L̄ do denote its complement.

Theorem (Decidable vs. Turing-recognizable)

A language L is decidable iff both L and L̄ are Turing-recognizable.

Proof.

(⇒): obvious (Why?) . . .

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Connection Turing-recognizable and Turing-decidable (2)

Proof (continued).

(⇐): Let ML be a DTM that recognizes L,
and let ML̄ be a DTM that recognizes L̄.

The following algorithm decides L:

On a given input word w proceed as follows:
FOR s := 1, 2, 3, . . . :

IF ML stops on w in s steps in the accept state:
ACCEPT

IF ML̄ stops on w in s steps in the accept state:
REJECT

Why don’t we first entirely simulate ML on the input
and only afterwards ML̄?

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Connection Turing-recognizable and Turing-decidable (2)

Proof (continued).

(⇐): Let ML be a DTM that recognizes L,
and let ML̄ be a DTM that recognizes L̄.

The following algorithm decides L:

On a given input word w proceed as follows:
FOR s := 1, 2, 3, . . . :

IF ML stops on w in s steps in the accept state:
ACCEPT

IF ML̄ stops on w in s steps in the accept state:
REJECT

Why don’t we first entirely simulate ML on the input
and only afterwards ML̄?

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Example: Decidable 6= Known Algorithm

Decidability of L does not mean we know how to decide it:

L = {n ∈ N | there are n consecutive 7s
L = {n ∈ N | in the decimal representation of π}.
L is decidable.

There are either 7-sequences of arbitrary length in π (case 1)
or there is a maximal number n0 of consecutive 7s (case 2).

Case 1: accept for all n
Case 2: accept if n ≤ n0, otherwise reject

In both cases, we can decide the language.

We just do not know what is the correct version
(and what is n0 in case 2).

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Example: Decidable 6= Known Algorithm

Decidability of L does not mean we know how to decide it:

L = {n ∈ N | there are n consecutive 7s
L = {n ∈ N | in the decimal representation of π}.
L is decidable.

There are either 7-sequences of arbitrary length in π (case 1)
or there is a maximal number n0 of consecutive 7s (case 2).

Case 1: accept for all n
Case 2: accept if n ≤ n0, otherwise reject

In both cases, we can decide the language.

We just do not know what is the correct version
(and what is n0 in case 2).

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Example: Decidable 6= Known Algorithm

Decidability of L does not mean we know how to decide it:

L = {n ∈ N | there are n consecutive 7s
L = {n ∈ N | in the decimal representation of π}.
L is decidable.

There are either 7-sequences of arbitrary length in π (case 1)
or there is a maximal number n0 of consecutive 7s (case 2).

Case 1: accept for all n
Case 2: accept if n ≤ n0, otherwise reject

In both cases, we can decide the language.

We just do not know what is the correct version
(and what is n0 in case 2).

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Example: Decidable 6= Known Algorithm

Decidability of L does not mean we know how to decide it:

L = {n ∈ N | there are n consecutive 7s
L = {n ∈ N | in the decimal representation of π}.
L is decidable.

There are either 7-sequences of arbitrary length in π (case 1)
or there is a maximal number n0 of consecutive 7s (case 2).

Case 1: accept for all n
Case 2: accept if n ≤ n0, otherwise reject

In both cases, we can decide the language.

We just do not know what is the correct version
(and what is n0 in case 2).

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Example: Decidable 6= Known Algorithm

Decidability of L does not mean we know how to decide it:

L = {n ∈ N | there are n consecutive 7s
L = {n ∈ N | in the decimal representation of π}.
L is decidable.

There are either 7-sequences of arbitrary length in π (case 1)
or there is a maximal number n0 of consecutive 7s (case 2).

Case 1: accept for all n
Case 2: accept if n ≤ n0, otherwise reject

In both cases, we can decide the language.

We just do not know what is the correct version
(and what is n0 in case 2).

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Example: Decidable 6= Known Algorithm

Decidability of L does not mean we know how to decide it:

L = {n ∈ N | there are n consecutive 7s
L = {n ∈ N | in the decimal representation of π}.
L is decidable.

There are either 7-sequences of arbitrary length in π (case 1)
or there is a maximal number n0 of consecutive 7s (case 2).

Case 1: accept for all n
Case 2: accept if n ≤ n0, otherwise reject

In both cases, we can decide the language.

We just do not know what is the correct version
(and what is n0 in case 2).

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Example: Decidable 6= Known Algorithm

Decidability of L does not mean we know how to decide it:

L = {n ∈ N | there are n consecutive 7s
L = {n ∈ N | in the decimal representation of π}.
L is decidable.

There are either 7-sequences of arbitrary length in π (case 1)
or there is a maximal number n0 of consecutive 7s (case 2).

Case 1: accept for all n
Case 2: accept if n ≤ n0, otherwise reject

In both cases, we can decide the language.

We just do not know what is the correct version
(and what is n0 in case 2).

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Questions

Questions?

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

The Halting Problem H

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Reminder: Encodings of Turing Machines

We have seen how every deterministic Turing machine with
input alphabet {0, 1} can be encoded as a word over {0, 1}.
Can there be several words that encode the same DTM?

Not every word over {0, 1} corresponds to such an encoding.

To define for every w ∈ {0, 1}∗ a corresponding TM, we use
an arbitrary fixed DTM M̂ and define

Mw =

{
M ′ if w is the encoding of some DTM M ′

M̂ otherwise

Mw = “Turing machine encoded by w”

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Reminder: Encodings of Turing Machines

We have seen how every deterministic Turing machine with
input alphabet {0, 1} can be encoded as a word over {0, 1}.
Can there be several words that encode the same DTM?

Not every word over {0, 1} corresponds to such an encoding.

To define for every w ∈ {0, 1}∗ a corresponding TM, we use
an arbitrary fixed DTM M̂ and define

Mw =

{
M ′ if w is the encoding of some DTM M ′

M̂ otherwise

Mw = “Turing machine encoded by w”

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Reminder: Encodings of Turing Machines

We have seen how every deterministic Turing machine with
input alphabet {0, 1} can be encoded as a word over {0, 1}.
Can there be several words that encode the same DTM?

Not every word over {0, 1} corresponds to such an encoding.

To define for every w ∈ {0, 1}∗ a corresponding TM, we use
an arbitrary fixed DTM M̂ and define

Mw =

{
M ′ if w is the encoding of some DTM M ′

M̂ otherwise

Mw = “Turing machine encoded by w”

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Reminder: Encodings of Turing Machines

We have seen how every deterministic Turing machine with
input alphabet {0, 1} can be encoded as a word over {0, 1}.
Can there be several words that encode the same DTM?

Not every word over {0, 1} corresponds to such an encoding.

To define for every w ∈ {0, 1}∗ a corresponding TM, we use
an arbitrary fixed DTM M̂ and define

Mw =

{
M ′ if w is the encoding of some DTM M ′

M̂ otherwise

Mw = “Turing machine encoded by w”

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Halting Problem

Definition (Halting Problem)

The halting problem is the language

H = {w#x ∈ {0, 1, #}∗ | w , x ∈ {0, 1}∗,
Mw started on x terminates}

“Does the computation of the TM encoded by w halt on input x?”
“Does a given piece of code terminate on a given input?”

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

The Halting Problem is Turing-recognizable

Theorem

The halting problem H is Turing-recognizable.

The following Turing machine U recognizes language H:

On input w#x :

1 If the input contains more than one # then reject.

2 Simulate Mw (the TM encoded by w) on input x .

3 If Mw halts, accept.

What does U do if Mw does not halt on the input?

U is an example of a so-called universal Turing machine
which can simulate any other Turing machine
from the description of that machine.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

The Halting Problem is Turing-recognizable

Theorem

The halting problem H is Turing-recognizable.

The following Turing machine U recognizes language H:

On input w#x :

1 If the input contains more than one # then reject.

2 Simulate Mw (the TM encoded by w) on input x .

3 If Mw halts, accept.

What does U do if Mw does not halt on the input?

U is an example of a so-called universal Turing machine
which can simulate any other Turing machine
from the description of that machine.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

The Halting Problem is Turing-recognizable

Theorem

The halting problem H is Turing-recognizable.

The following Turing machine U recognizes language H:

On input w#x :

1 If the input contains more than one # then reject.

2 Simulate Mw (the TM encoded by w) on input x .

3 If Mw halts, accept.

What does U do if Mw does not halt on the input?

U is an example of a so-called universal Turing machine
which can simulate any other Turing machine
from the description of that machine.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Questions

Questions?

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

H is Undecidable

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Undecidability

If some language or problem is not Turing-decidable
then we call it undecidable.

Intuitively, this means that for this problem there is no
algorithm that is correct and terminates on all inputs.

To establish the undeciability of the halting problem, we will
consider a situation where we run a Turing machine/algorithm
on its own encoding/source code.

We have seen something similar in the very first lecture. . .

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Undecidability

If some language or problem is not Turing-decidable
then we call it undecidable.

Intuitively, this means that for this problem there is no
algorithm that is correct and terminates on all inputs.

To establish the undeciability of the halting problem, we will
consider a situation where we run a Turing machine/algorithm
on its own encoding/source code.

We have seen something similar in the very first lecture. . .

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Undecidability

If some language or problem is not Turing-decidable
then we call it undecidable.

Intuitively, this means that for this problem there is no
algorithm that is correct and terminates on all inputs.

To establish the undeciability of the halting problem, we will
consider a situation where we run a Turing machine/algorithm
on its own encoding/source code.

We have seen something similar in the very first lecture. . .

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Undecidability

If some language or problem is not Turing-decidable
then we call it undecidable.

Intuitively, this means that for this problem there is no
algorithm that is correct and terminates on all inputs.

To establish the undeciability of the halting problem, we will
consider a situation where we run a Turing machine/algorithm
on its own encoding/source code.

We have seen something similar in the very first lecture. . .

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Uncomputable Problems?

Consider functions whose inputs are strings:

def program_returns_true_on_input(prog_code, input_str):

...

returns True if prog_code run on input_str returns True

returns False if not

def weird_program(prog_code):

if program_returns_true_on_input(prog_code, prog_code):

return False

else:

return True

What is the return value of weird program

if we run it on its own source code?

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Uncomputable Problems?

Consider functions whose inputs are strings:

def program_returns_true_on_input(prog_code, input_str):

...

returns True if prog_code run on input_str returns True

returns False if not

def weird_program(prog_code):

if program_returns_true_on_input(prog_code, prog_code):

return False

else:

return True

What is the return value of weird program

if we run it on its own source code?

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Uncomputable Problems?

Consider functions whose inputs are strings:

def program_returns_true_on_input(prog_code, input_str):

...

returns True if prog_code run on input_str returns True

returns False if not

def weird_program(prog_code):

if program_returns_true_on_input(prog_code, prog_code):

return False

else:

return True

What is the return value of weird program

if we run it on its own source code?

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Solution

We can make a case distinction:

Case 1: weird program returns True on its own source.
Then weird program returns False on its own source code.
Case 2: weird program returns False on its own source.
Then weird program returns True on its own source code.

Contradiction in all cases, so weird program cannot exist.

From the source we see that this can only be because
subroutine program returns true on input cannot exist.

Overall, we have proven that there cannot be a program with
the behaviour described by the comments.

For the undecidability of the halting problem, we will use an
analogous argument, only with Turing machines instead of
code and termination instead of return values.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Solution

We can make a case distinction:

Case 1: weird program returns True on its own source.
Then weird program returns False on its own source code.
Case 2: weird program returns False on its own source.
Then weird program returns True on its own source code.

Contradiction in all cases, so weird program cannot exist.

From the source we see that this can only be because
subroutine program returns true on input cannot exist.

Overall, we have proven that there cannot be a program with
the behaviour described by the comments.

For the undecidability of the halting problem, we will use an
analogous argument, only with Turing machines instead of
code and termination instead of return values.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Solution

We can make a case distinction:

Case 1: weird program returns True on its own source.
Then weird program returns False on its own source code.
Case 2: weird program returns False on its own source.
Then weird program returns True on its own source code.

Contradiction in all cases, so weird program cannot exist.

From the source we see that this can only be because
subroutine program returns true on input cannot exist.

Overall, we have proven that there cannot be a program with
the behaviour described by the comments.

For the undecidability of the halting problem, we will use an
analogous argument, only with Turing machines instead of
code and termination instead of return values.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Solution

We can make a case distinction:

Case 1: weird program returns True on its own source.
Then weird program returns False on its own source code.
Case 2: weird program returns False on its own source.
Then weird program returns True on its own source code.

Contradiction in all cases, so weird program cannot exist.

From the source we see that this can only be because
subroutine program returns true on input cannot exist.

Overall, we have proven that there cannot be a program with
the behaviour described by the comments.

For the undecidability of the halting problem, we will use an
analogous argument, only with Turing machines instead of
code and termination instead of return values.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Solution

We can make a case distinction:

Case 1: weird program returns True on its own source.
Then weird program returns False on its own source code.
Case 2: weird program returns False on its own source.
Then weird program returns True on its own source code.

Contradiction in all cases, so weird program cannot exist.

From the source we see that this can only be because
subroutine program returns true on input cannot exist.

Overall, we have proven that there cannot be a program with
the behaviour described by the comments.

For the undecidability of the halting problem, we will use an
analogous argument, only with Turing machines instead of
code and termination instead of return values.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Solution

We can make a case distinction:

Case 1: weird program returns True on its own source.
Then weird program returns False on its own source code.
Case 2: weird program returns False on its own source.
Then weird program returns True on its own source code.

Contradiction in all cases, so weird program cannot exist.

From the source we see that this can only be because
subroutine program returns true on input cannot exist.

Overall, we have proven that there cannot be a program with
the behaviour described by the comments.

For the undecidability of the halting problem, we will use an
analogous argument, only with Turing machines instead of
code and termination instead of return values.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Solution

We can make a case distinction:

Case 1: weird program returns True on its own source.
Then weird program returns False on its own source code.
Case 2: weird program returns False on its own source.
Then weird program returns True on its own source code.

Contradiction in all cases, so weird program cannot exist.

From the source we see that this can only be because
subroutine program returns true on input cannot exist.

Overall, we have proven that there cannot be a program with
the behaviour described by the comments.

For the undecidability of the halting problem, we will use an
analogous argument, only with Turing machines instead of
code and termination instead of return values.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Undecidability of the Halting Problem (1)

Theorem (Undecidability of the Halting Problem)

The halting problem H is undecidable.

Proof.

Proof by contradiction: we assume that the halting problem H was
decidable and derive a contradiction.

So assume H is decidable and let D be a DTM that decides it. . . .

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Undecidability of the Halting Problem (1)

Theorem (Undecidability of the Halting Problem)

The halting problem H is undecidable.

Proof.

Proof by contradiction: we assume that the halting problem H was
decidable and derive a contradiction.

So assume H is decidable and let D be a DTM that decides it. . . .

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Undecidability of the Halting Problem (1)

Theorem (Undecidability of the Halting Problem)

The halting problem H is undecidable.

Proof.

Proof by contradiction: we assume that the halting problem H was
decidable and derive a contradiction.

So assume H is decidable and let D be a DTM that decides it. . . .

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Undecidability of the Halting Problem (2)

Proof (continued).

Construct the following new machine M that takes a word
x ∈ {0, 1}∗ as input:

1 Execute D on the input x#x .

2 If it rejects: accept.

3 Otherwise: enter an endless loop.

Let w be the encoding of M. How will M behave on input w?

M run on w stops
iff D run on w#w rejects
iff w#w 6∈ H
iff M run on w does not stop (remember that w encodes M)

Contradiction! DTM M cannot exist.
⇒ DTM D cannot exist, thus H is not decidable.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Undecidability of the Halting Problem (2)

Proof (continued).

Construct the following new machine M that takes a word
x ∈ {0, 1}∗ as input:

1 Execute D on the input x#x .

2 If it rejects: accept.

3 Otherwise: enter an endless loop.

Let w be the encoding of M. How will M behave on input w?

M run on w stops
iff D run on w#w rejects
iff w#w 6∈ H
iff M run on w does not stop (remember that w encodes M)

Contradiction! DTM M cannot exist.
⇒ DTM D cannot exist, thus H is not decidable.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Undecidability of the Halting Problem (2)

Proof (continued).

Construct the following new machine M that takes a word
x ∈ {0, 1}∗ as input:

1 Execute D on the input x#x .

2 If it rejects: accept.

3 Otherwise: enter an endless loop.

Let w be the encoding of M. How will M behave on input w?

M run on w stops
iff D run on w#w rejects
iff w#w 6∈ H
iff M run on w does not stop (remember that w encodes M)

Contradiction! DTM M cannot exist.
⇒ DTM D cannot exist, thus H is not decidable.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Undecidability of the Halting Problem (2)

Proof (continued).

Construct the following new machine M that takes a word
x ∈ {0, 1}∗ as input:

1 Execute D on the input x#x .

2 If it rejects: accept.

3 Otherwise: enter an endless loop.

Let w be the encoding of M. How will M behave on input w?

M run on w stops
iff D run on w#w rejects
iff w#w 6∈ H
iff M run on w does not stop (remember that w encodes M)

Contradiction! DTM M cannot exist.
⇒ DTM D cannot exist, thus H is not decidable.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Undecidability of the Halting Problem (2)

Proof (continued).

Construct the following new machine M that takes a word
x ∈ {0, 1}∗ as input:

1 Execute D on the input x#x .

2 If it rejects: accept.

3 Otherwise: enter an endless loop.

Let w be the encoding of M. How will M behave on input w?

M run on w stops
iff D run on w#w rejects
iff w#w 6∈ H
iff M run on w does not stop (remember that w encodes M)

Contradiction! DTM M cannot exist.
⇒ DTM D cannot exist, thus H is not decidable.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Undecidability of the Halting Problem (2)

Proof (continued).

Construct the following new machine M that takes a word
x ∈ {0, 1}∗ as input:

1 Execute D on the input x#x .

2 If it rejects: accept.

3 Otherwise: enter an endless loop.

Let w be the encoding of M. How will M behave on input w?

M run on w stops
iff D run on w#w rejects
iff w#w 6∈ H
iff M run on w does not stop (remember that w encodes M)

Contradiction! DTM M cannot exist.
⇒ DTM D cannot exist, thus H is not decidable.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

A Language that is not Turing-recognizable

We have the following results:

A language L is decidable iff both L and L̄ are
Turing-recognizable.

The halting problem H is Turing-recognizable but not
decidable.

Corollary

The complement H̄ of the halting problem H is not
Turing-recognizable.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Exercises

True or false? There is a grammar that
generates H.

True or false? Not all languages are of type 0.

Justify your answers.

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Questions

Questions?

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Reprise: Type-0 Languages

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Back to Chapter B11: Closure Properties

Intersection Union Complement Concatenation Star

Type 3 Yes Yes Yes Yes Yes

Type 2 No Yes No Yes Yes

Type 1 Yes(2) Yes(1) Yes(2) Yes(1) Yes(1)

Type 0 Yes(2) Yes(1) No(3) Yes(1) Yes(1)

Proofs?
(1) proof via grammars, similar to context-free cases
(2) without proof
(3) proof in later chapters (part C)

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Back to Chapter B11: Decidability

Word
problem

Emptiness
problem

Equivalence
problem

Intersection
problem

Type 3 Yes Yes Yes Yes

Type 2 Yes Yes No No

Type 1 Yes(1) No(3) No(2) No(2)

Type 0 No(4) No(4) No(4) No(4)

Proofs?
(1) same argument we used for context-free languages
(2) because already undecidable for context-free languages
(3) without proof
(4) proofs in later chapters (part C)

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Answers to Old Questions

Closure properties:

H is Turing-recognizable (and thus type 0) but not decidable.

 H̄ is not Turing-recognizable, thus not type 0.

 Type-0 languages are not closed under complement.

Decidability:

H is type 0 but not decidable.

 word problem for type-0 languages not decidable

 emptiness, equivalence, intersection problem: later in exercises
(We are still missing some important results for this.)

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Questions

Questions?

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Summary

Turing-recognizable vs. decidable The Halting Problem H H is Undecidable Type-0 Languages Summary

Summary

A language L is decidable iff both L and L̄ are
Turing-recognizable.

The halting problem is the language

H = {w#x ∈ {0, 1, #}∗ | w , x ∈ {0, 1}∗,
Mw started on x terminates}

The halting problem is Turing-recognizable but undecidable.

The complement language H̄ is an example of a language that
is not even Turing-recognizable.

	Turing-recognizable vs. decidable
	

	The Halting Problem H
	

	H is Undecidable
	

	Reprise: Type-0 Languages
	

	Summary
	

