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Overview: Course

contents of this course:

A. background X
. mathematical foundations and proof techniques

B. automata theory and formal languages X
. What is a computation?

C. Turing computability
. What can be computed at all?

D. complexity theory
. What can be computed efficiently?

E. more computability theory
. Other models of computability
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Main Question

Main question in this part of the course:

What can be computed
by a computer?



Hilbert’s 10th Problem Church-Turing Thesis Encoding Summary

Hilbert’s 10th Problem
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Algorithms

Informally, an algorithm is a collection of simple instructions
for carrying out some task.

Long history in mathematics since ancient times: descriptions
of algorithms e. g. for finding prime numbers or the greatest
common divisor.

A formal notion of an algorithm itself was not defined until
the 20th century.
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Hilbert’s 10th Problem

Around 1900 David Hilbert (German mathematician) formulated
23 mathematical problems as challenge for the 20th century.

Hilbert’s 10th problem

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients:
To devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.

What does this mean?



Hilbert’s 10th Problem Church-Turing Thesis Encoding Summary

Hilbert’s 10th Problem

Around 1900 David Hilbert (German mathematician) formulated
23 mathematical problems as challenge for the 20th century.

Hilbert’s 10th problem

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients:
To devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.

What does this mean?



Hilbert’s 10th Problem Church-Turing Thesis Encoding Summary

Diophantine Equations

A polynomial is a sum of terms where each term is a product
of a constant (the coefficient) and certain variables.
e. g. 6x3yz2 + 3xy2 − x3 − 10

A polynomial equation is an equation p = 0, where p is a
polynmial. A solutions of the equation is called a root of p.
e. g. 6x3yz2 + 3xy2 − x3 − 10 has a root x = 5, y = 3, z = 0.

Diophantine equations are polynomial equations, where only
integral roots (assigning only integer values to the variables)
count as solutions.
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Hilbert’s 10th Problem

Hilbert’s 10th problem

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients:
To devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.

� Specify an algorithm that takes a polynomial
with integer coefficients as input and
outputs whether it has an integral root.

There is no such algorithm!
(implication of Matiyasevich’s theorem from 1970)
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Questions

Questions?
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Church-Turing Thesis
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Formal Notion of Algorithm?

What is an algorithm?

intuitive model of algorithm (cookbook recipe)
vs. algorithm in modern programming language
vs. formal mathematical models

Proving that no algorithm exists requires
a clear notion of algorithm.
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Church-Turing Thesis

Church-Turing Thesis

All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

German: Church-Turing-These

cannot be proven (why not?)

but there is significant evidence such as equivalence of TMs
and different register machines:

Counter machine: concept of registers
Random-access machine (RAM): adds indirect addressing
Random-access stored-program machines: related to the von
Neumann architecture (very close to modern computer
systems)
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What about the Infinite Tape?

Turing Machines have access to infinite storage.

Computer systems do not.

However: A halting (in particular: accepting) computation of
a TM can only use a finite part of the tape.

If a problem is undecidable, we cannot solve it with a
computer, no matter how much memory we provide.
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Turing Completeness

Church-Turing Thesis

All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

Vice versa:

We say that a programming language is Turing-complete to
express that it can compute everything a Turing machine can.

We can show Turing completeness by showing that with the
programming language we can simulate any Turing machine.
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Back to Hilbert’s Problem

The corresponding formal problem (= language) is

D = {p | p is a polynomial with an integral root}

Formal way to say that “there is no algorithm for this problem”:

D is not Turing-decidable.
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Encoding
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Finite Structures as Strings

Turing machines take words (= strings) as input and can only
represent strings on their tape.

Is this a limitation?

Not really!
Computers also internally operate on binary numbers
(words over {0, 1}).
We just need to define how a string encodes a certain
structure e. g. how does a file of 0s and 1s specify an image?
We will have a look at two examples:

Example 1: Encoding of pairs of numbers
Example 2: Encoding of Turing machines
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Encoding and Decoding: Binary Encode

Consider the function encode : N2
0 → N0 with:

encode(x , y) :=

(
x + y + 1

2

)
+ x

encode is known as the Cantor pairing function
(German: Cantorsche Paarungsfunktion)

encode is computable

encode is bijective

x = 0 x = 1 x = 2 x = 3 x = 4
y = 0 0 2 5 9 14
y = 1 1 4 8 13 19
y = 2 3 7 12 18 25
y = 3 6 11 17 24 32
y = 4 10 16 23 31 40
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Encoding and Decoding: Binary Decode

Consider the inverse functions
decode1 : N0 → N0 and decode2 : N0 → N0 of encode:

decode1(encode(x , y)) = x

decode2(encode(x , y)) = y

decode1 and decode2 are computable
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Turing Machines as Inputs

We will at some point consider problems that have Turing
machines as their input.

 “programs that have programs as input”:
cf. compilers, interpreters, virtual machines, etc.

We have to think about how we can encode
arbitrary Turing machines as words over a fixed alphabet.

We use the binary alphabet Σ = {0, 1}.
As an intermediate step we first encode over the alphabet
Σ′ = {0, 1, #}.
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Encoding a Turing Machine as a Word (1)

Step 1: encode a Turing machine as a word over {0, 1, #}
Reminder: Turing machine M = 〈Q,Σ, Γ, δ, q0, qaccept, qreject〉
Idea:

input alphabet Σ should always be {0, 1}
enumerate states in Q and symbols in Γ
and consider them as numbers 0, 1, 2, . . .

blank symbol always receives number 2

start state always receives number 0, accept state number 1
and reject state number 2
(we can special-case machines where the start state is the accept or reject state)

Then it is sufficient to only encode δ explicitly:

Q: all states mentioned in the encoding of δ

Γ = {0, 1,�, a3, a4, . . . , ak}, where k is the largest symbol
number mentioned in the δ-rules
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Encoding a Turing Machine as a Word (2)

encode the rules:

Let δ(qi , aj) = 〈qi ′ , aj ′ ,D〉 be a rule in δ,
where the indices i , i ′, j , j ′ correspond to the enumeration of
states/symbols and D ∈ {L,R}.
encode this rule as
wi ,j ,i ′,j ′,D = ##bin(i)#bin(j)#bin(i ′)#bin(j ′)#bin(m),

where m =

{
0 if D = L

1 if D = R

For every rule in δ, we obtain one such word.

All of these words in sequence (in arbitrary order)
encode the Turing machine.
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Encoding a Turing Machine as a Word (3)

Step 2: transform into word over {0, 1} with mapping

0 7→ 00

1 7→ 01

# 7→ 11

Turing machine can be reconstructed from its encoding.
How?
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Encoding a Turing Machine as a Word (4)

Example (step 1)

δ(q0, a3) = 〈q3, a2,R〉 becomes ##0#11#11#10#1

δ(q3, a1) = 〈q1, a0, L〉 becomes ##11#1#1#0#0

Example (step 2)

##0#11#11#10#1##11#1#1#0#0

1111001101011101011101001101111101011101110111001100
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Exercise: Encoding of TMs (slido)

What would be the encoding of a transition
δ(q0, a0) = (q1, a2, L) as word over {0, 1}?
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Turing Machine Encoded by a Word

goal: function that maps any word in {0, 1}∗ to a Turing machine

problem: not all words in {0, 1}∗ are encodings of a Turing machine

solution: Let M̂ be an arbitrary fixed deterministic Turing machine
(for example one that always immediately stops). Then:

Definition (Turing Machine Encoded by a Word)

For all w ∈ {0, 1}∗:

Mw =

{
M ′ if w is the encoding of some DTM M ′

M̂ otherwise
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Notation for Encoding

Most of the time, we will not consider a particular encoding of
non-string objects.

For a single object O, we will just write 〈〈O〉〉 to denote some
suitable encoding of O as a string.

For several objects O1, . . . ,On, we write 〈〈O1, . . . ,On〉〉 for
their encoding into a single string.

In the high-level description of a TM we can refer to them as
the objects they are because on the lower level the TM can be
programmed to handle the encoded representation accordingly.
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Example

L = {〈〈G 〉〉 | G is a connected undirected graph}

We describe a TM that recognizes L:

On input 〈〈G 〉〉, the encoding of a undirected graph G :

1 Select the first node of G and mark it.

2 Repeat until no more nodes are marked:
For each node in G , mark it if it is adjacent to a node that is
already marked.

3 Scan all the nodes of G to determine whether they are all
marked. If yes, accept, otherwise reject.

Implicit (lower-level detail): If the input does not encode an
undirected graph, directly reject.
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Questions

Questions?



Hilbert’s 10th Problem Church-Turing Thesis Encoding Summary

Summary
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Summary

main question: what can a computer compute?

approach: investigate formal models of computation
→ deterministic Turing machines

Based on the (existing evidence for the) Church-Turing thesis,
we will describe the behaviour of Turing machines on a higher
abstraction level (such as pseudo-code).

The formal restriction of TMs to strings is not a practical
limitation but can be handled with suitable encodings.
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