
Theory of Computer Science
B3. Regular Languages

Gabriele Röger

University of Basel

March 16, 2022



Introduction Epsilon Rules Finite Automata Summary

Introduction



Introduction Epsilon Rules Finite Automata Summary

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple 〈V ,Σ,R,S〉 with

V finite set of variables (nonterminal symbols)

Σ finite alphabet of terminal symbols with V ∩ Σ = ∅
R ⊆ (V × (Σ ∪ ΣV )) ∪ {〈S , ε〉} finite set of rules

if S → ε ∈ R, there is no X ∈ V , y ∈ Σ with X → yS ∈ R

S ∈ V start variable.

Rule X → ε is only allowed if X = S and
S never occurs in the right-hand side of a rule.



Introduction Epsilon Rules Finite Automata Summary

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple 〈V ,Σ,R,S〉 with

V finite set of variables (nonterminal symbols)

Σ finite alphabet of terminal symbols with V ∩ Σ = ∅
R ⊆ (V × (Σ ∪ ΣV )) ∪ {〈S , ε〉} finite set of rules

if S → ε ∈ R, there is no X ∈ V , y ∈ Σ with X → yS ∈ R

S ∈ V start variable.

Rule X → ε is only allowed if X = S and
S never occurs in the right-hand side of a rule.



Introduction Epsilon Rules Finite Automata Summary

Question (Slido)

With a regular grammar, how many steps does it
take to derive a non-empty word (over Σ) from
the start variable?



Introduction Epsilon Rules Finite Automata Summary

Repetition: Regular Languages

A language is regular if it is generated by some regular grammar.

Definition (Regular Language)

A language L ⊆ Σ∗ is regular
if there exists a regular grammar G with L(G ) = L.



Introduction Epsilon Rules Finite Automata Summary

Questions

How restrictive is the requirement on ε rules?
If we don’t restrict the usage of ε as right-hand side of a rule,
what does this change?

How do regular languages relate to finite automata?
Can all regular languages be recognized by a finite
automaton? And vice versa?

With what operations can we “combine” regular languages
and the result is again a regular language?
E.g. is the intersection of two regular languages regular?



Introduction Epsilon Rules Finite Automata Summary

Questions

Questions?



Introduction Epsilon Rules Finite Automata Summary

Epsilon Rules



Introduction Epsilon Rules Finite Automata Summary

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple 〈V ,Σ,R,S〉 with

V finite set of variables (nonterminal symbols)

Σ finite alphabet of terminal symbols with V ∩ Σ = ∅
R ⊆ (V × (Σ ∪ ΣV )) ∪ {〈S , ε〉} finite set of rules

if S → ε ∈ R, there is no X ∈ V , y ∈ Σ with X → yS ∈ R

S ∈ V start variable.

Rule X → ε is only allowed if X = S and
S never occurs in the right-hand side of a rule.

How restrictive is this?



Introduction Epsilon Rules Finite Automata Summary

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple 〈V ,Σ,R,S〉 with

V finite set of variables (nonterminal symbols)

Σ finite alphabet of terminal symbols with V ∩ Σ = ∅
R ⊆ (V × (Σ ∪ ΣV )) ∪ {〈S , ε〉} finite set of rules

if S → ε ∈ R, there is no X ∈ V , y ∈ Σ with X → yS ∈ R

S ∈ V start variable.

Rule X → ε is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?



Introduction Epsilon Rules Finite Automata Summary

Our Plan

We are going to show that every grammar with rules

R ⊆ V × (Σ ∪ ΣV ∪ ε)

generates a regular language.



Introduction Epsilon Rules Finite Automata Summary

Question

This is much simpler!
Why don’t we define

regular languages
via such grammars?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net



Introduction Epsilon Rules Finite Automata Summary

Question

Both variants (restricting the occurrence of ε on
the right-hand side of rules or not) characterize
exactly the regular languages.

In the following situations, which variant would you prefer?

You want to prove something for all regular languages.

You want to specify a grammar to establish
that a certain language is regular.

You want to write an algorithm that takes a grammar
for a regular language as input.



Introduction Epsilon Rules Finite Automata Summary

Our Plan

We are going to show that every grammar with rules

R ⊆ V × (Σ ∪ ΣV ∪ ε)

generates a regular language.

The proof will be constructive, i. e. it will tell us how to
construct a regular grammar for a language
that is given by such a more general grammar.

Two steps:
1 Eliminate the start variable from the right-hand side of rules.
2 Eliminate forbidden occurrences of ε.



Introduction Epsilon Rules Finite Automata Summary

Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start
variable does not occur on the right-hand side of any rule.

Theorem

For every grammar G = 〈V ,Σ,R,S〉 there is a grammar
G ′ = 〈V ′,Σ,R ′,S〉 with rules
R ′ ⊆ (V ′ ∪ Σ)∗V ′(V ′ ∪ Σ)∗ × (V ′ \ {S} ∪ Σ)∗ such that
L(G ) = L(G ′).

Note: this theorem is true for all grammars.



Introduction Epsilon Rules Finite Automata Summary

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let’s illustrate its idea.
Consider G = 〈{S,X}, {a, b},R, S〉 with the following rules in R:

bS→ ε S→ XabS bX→ aSa X→ abc

The new grammar has all original rules except that S is replaced
with a new variable S’ (allowing to derive everything from S’ that
could originally be derived from the start variable S):

bS’→ ε S’→ XabS’ bX→ aS’a X→ abc

In addition, it has rules that allow to start from the original start
variable but switch to S’ after the first rule application:

S→ XabS’



Introduction Epsilon Rules Finite Automata Summary

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let’s illustrate its idea.
Consider G = 〈{S,X}, {a, b},R, S〉 with the following rules in R:

bS→ ε S→ XabS bX→ aSa X→ abc

The new grammar has all original rules except that S is replaced
with a new variable S’ (allowing to derive everything from S’ that
could originally be derived from the start variable S):

bS’→ ε S’→ XabS’ bX→ aS’a X→ abc

In addition, it has rules that allow to start from the original start
variable but switch to S’ after the first rule application:

S→ XabS’



Introduction Epsilon Rules Finite Automata Summary

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let’s illustrate its idea.
Consider G = 〈{S,X}, {a, b},R, S〉 with the following rules in R:

bS→ ε S→ XabS bX→ aSa X→ abc

The new grammar has all original rules except that S is replaced
with a new variable S’ (allowing to derive everything from S’ that
could originally be derived from the start variable S):

bS’→ ε S’→ XabS’ bX→ aS’a X→ abc

In addition, it has rules that allow to start from the original start
variable but switch to S’ after the first rule application:

S→ XabS’



Introduction Epsilon Rules Finite Automata Summary

Start Variable in Right-Hand Side of Rules: Proof

Proof.

Let G = 〈V ,Σ,R,S〉 be a grammar and S ′ 6∈ V be a new variable.
Construct rule set R ′ from R as follows:

for every rule r ∈ R, add a rule r ′ to R ′, where r ′ is the result
of replacing all occurences of S in r with S ′.

for every rule S → w ∈ R, add a rule S → w ′ to R ′, where w ′

is the result of replacing all occurences of S in w with S ′.

Then L(G ) = L(〈V ∪ {S ′},Σ,R ′, S〉).

Note that the rules in R ′ are not fundamentally different from the
rules in R. In particular:

If R ⊆ V × (Σ ∪ΣV ∪ {ε}) then R ′ ⊆ V ′ × (Σ ∪ΣV ′ ∪ {ε}).

If R ⊆ V × (V ∪ Σ)∗ then R ′ ⊆ V ′ × (V ′ ∪ Σ)∗.



Introduction Epsilon Rules Finite Automata Summary

Start Variable in Right-Hand Side of Rules: Proof

Proof.

Let G = 〈V ,Σ,R,S〉 be a grammar and S ′ 6∈ V be a new variable.
Construct rule set R ′ from R as follows:

for every rule r ∈ R, add a rule r ′ to R ′, where r ′ is the result
of replacing all occurences of S in r with S ′.

for every rule S → w ∈ R, add a rule S → w ′ to R ′, where w ′

is the result of replacing all occurences of S in w with S ′.

Then L(G ) = L(〈V ∪ {S ′},Σ,R ′, S〉).

Note that the rules in R ′ are not fundamentally different from the
rules in R. In particular:

If R ⊆ V × (Σ ∪ΣV ∪ {ε}) then R ′ ⊆ V ′ × (Σ ∪ΣV ′ ∪ {ε}).

If R ⊆ V × (V ∪ Σ)∗ then R ′ ⊆ V ′ × (V ′ ∪ Σ)∗.



Introduction Epsilon Rules Finite Automata Summary

Epsilon Rules

Theorem

For every grammar G with rules R ⊆ V × (Σ ∪ ΣV ∪ {ε})
there is a regular grammar G ′ with L(G ) = L(G ′).



Introduction Epsilon Rules Finite Automata Summary

Epsilon Rules: Example

Let’s again first illustrate the idea.

Consider G = 〈{S,X,Y}, {a, b},R,S〉 with the following rules in R:

S→ ε S→ aX X→ aX X→ aY Y→ bY Y→ ε

1 The start variable does not occur on a right-hand side. X
2 Determine the set of variables that can be replaced with the

empty word: Vε = {S ,Y }.
3 Eliminate forbidden rules: ///////Y→ ε

4 If a variable from Vε occurs in the right-hand side,
add another rule that directly emulates a subsequent
replacement with the empty word: X→ a and Y→ b



Introduction Epsilon Rules Finite Automata Summary

Epsilon Rules: Example

Let’s again first illustrate the idea.

Consider G = 〈{S,X,Y}, {a, b},R,S〉 with the following rules in R:

S→ ε S→ aX X→ aX X→ aY Y→ bY Y→ ε

1 The start variable does not occur on a right-hand side. X
2 Determine the set of variables that can be replaced with the

empty word: Vε = {S ,Y }.
3 Eliminate forbidden rules: ///////Y→ ε

4 If a variable from Vε occurs in the right-hand side,
add another rule that directly emulates a subsequent
replacement with the empty word: X→ a and Y→ b



Introduction Epsilon Rules Finite Automata Summary

Epsilon Rules: Example

Let’s again first illustrate the idea.

Consider G = 〈{S,X,Y}, {a, b},R,S〉 with the following rules in R:

S→ ε S→ aX X→ aX X→ aY Y→ bY Y→ ε

1 The start variable does not occur on a right-hand side. X
2 Determine the set of variables that can be replaced with the

empty word: Vε = {S ,Y }.
3 Eliminate forbidden rules: ///////Y→ ε

4 If a variable from Vε occurs in the right-hand side,
add another rule that directly emulates a subsequent
replacement with the empty word: X→ a and Y→ b



Introduction Epsilon Rules Finite Automata Summary

Epsilon Rules: Example

Let’s again first illustrate the idea.

Consider G = 〈{S,X,Y}, {a, b},R,S〉 with the following rules in R:

S→ ε S→ aX X→ aX X→ aY Y→ bY Y→ ε

1 The start variable does not occur on a right-hand side. X
2 Determine the set of variables that can be replaced with the

empty word: Vε = {S ,Y }.
3 Eliminate forbidden rules: ///////Y→ ε

4 If a variable from Vε occurs in the right-hand side,
add another rule that directly emulates a subsequent
replacement with the empty word: X→ a and Y→ b



Introduction Epsilon Rules Finite Automata Summary

Epsilon Rules: Example

Let’s again first illustrate the idea.

Consider G = 〈{S,X,Y}, {a, b},R,S〉 with the following rules in R:

S→ ε S→ aX X→ aX X→ aY Y→ bY Y→ ε

1 The start variable does not occur on a right-hand side. X
2 Determine the set of variables that can be replaced with the

empty word: Vε = {S ,Y }.
3 Eliminate forbidden rules: ///////Y→ ε

4 If a variable from Vε occurs in the right-hand side,
add another rule that directly emulates a subsequent
replacement with the empty word: X→ a and Y→ b



Introduction Epsilon Rules Finite Automata Summary

Epsilon Rules

Theorem

For every grammar G with rules R ⊆ V × (Σ ∪ ΣV ∪ {ε})
there is a regular grammar G ′ with L(G ) = L(G ′).

Proof.

Let G = 〈V ,Σ,R,S〉 be a grammar s.t. R ⊆ V × (Σ ∪ ΣV ∪ {ε}).
Use the previous proof to construct grammar G ′ = 〈V ′,Σ,R ′,S〉
s.t. R ′ ⊆ V ′ × (Σ ∪ Σ(V ′ \ {S}) ∪ {ε}) and L(G ′) = L(G ).
Let Vε = {A | A→ ε ∈ R ′}.
Let R ′′ be the rule set that is created from R ′ by removing all rules
of the form A→ ε (A 6= S). Additionally, for every rule of the form
B → xA with A ∈ Vε,B ∈ V ′, x ∈ Σ we add a rule B → x to R ′′.

Then G ′′ = 〈V ′,Σ,R ′′,S〉 is regular and L(G ) = L(G ′′).



Introduction Epsilon Rules Finite Automata Summary

Questions

Questions?



Introduction Epsilon Rules Finite Automata Summary

Exercise (Slido)

Consider G = 〈{S,X,Y}, {a, b},R,S〉 with the
following rules in R:

S→ ε S→ aX

X→ aX X→ aY

Y→ bY Y→ ε

Is G a regular grammar?

Is L(G ) regular?



Introduction Epsilon Rules Finite Automata Summary

Finite Automata



Introduction Epsilon Rules Finite Automata Summary

Languages Recognized by DFAs are Regular

Theorem

Every language recognized by a DFA is regular (type 3).



Introduction Epsilon Rules Finite Automata Summary

Languages Recognized by DFAs are Regular

Theorem

Every language recognized by a DFA is regular (type 3).

Proof.

Let M = 〈Q,Σ, δ, q0,F 〉 be a DFA.
We define a regular grammar G with L(G ) = L(M).

Define G = 〈Q,Σ,R, q0〉 where R contains

a rule q → aq′ for every δ(q, a) = q′, and

a rule q → ε for every q ∈ F .

(We can eliminate forbidden epsilon rules
as described at the start of the chapter.) . . .



Introduction Epsilon Rules Finite Automata Summary

Languages Recognized by DFAs are Regular

Theorem

Every language recognized by a DFA is regular (type 3).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)

iff there is a sequence of states q′0, q
′
1, . . . , q

′
n with

iff q′0 = q0, q′n ∈ F and δ(q′i−1, ai ) = q′i for all i ∈ {1, . . . , n}
iff there is a sequence of variables q′0, q

′
1, . . . , q

′
n with

iff q′0 is start variable and we have q′0 ⇒ a1q
′
1 ⇒ a1a2q

′
2 ⇒

iff · · · ⇒ a1a2 . . . anq
′
n ⇒ a1a2 . . . an.

iff w ∈ L(G )



Introduction Epsilon Rules Finite Automata Summary

Exercise (Slido)

q0q1 q2
0

1

0

1

0

1

Specify a regular grammar that generates the
language recognized by this DFA.



Introduction Epsilon Rules Finite Automata Summary

Questions

Questions?



Introduction Epsilon Rules Finite Automata Summary

Question

Is the inverse true as well:
for every regular language, is there a

DFA that recognizes it? That is, are the
languages recognized by DFAs exactly

the regular languages?

Yes!
We will prove this via a detour.

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net



Introduction Epsilon Rules Finite Automata Summary

Question

Is the inverse true as well:
for every regular language, is there a

DFA that recognizes it? That is, are the
languages recognized by DFAs exactly

the regular languages?

Yes!
We will prove this via a detour.

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net



Introduction Epsilon Rules Finite Automata Summary

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G ) = L(M).

Proof illustration:

Consider G = 〈{S,A,B}, {a, b},R,S〉 with the following rules in R:

S→ ε S→ aA A→ aA A→ aB

A→ a B→ bB B→ b



Introduction Epsilon Rules Finite Automata Summary

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G ) = L(M).

Proof.

Let G = 〈V ,Σ,R,S〉 be a regular grammar.
Define NFA M = 〈Q,Σ, δ, q0,F 〉 with

Q = V ∪ {X}, X 6∈ V

q0 = S

F =

{
{S ,X} if S → ε ∈ R

{X} if S → ε 6∈ R

B ∈ δ(A, a) if A→ aB ∈ R

X ∈ δ(A, a) if A→ a ∈ R

. . .



Introduction Epsilon Rules Finite Automata Summary

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G ) = L(M).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗ with n ≥ 1:

w ∈ L(G )

iff there is a sequence on variables A1,A2, . . . ,An−1 with
iff S ⇒ a1A1 ⇒ a1a2A2 ⇒ · · · ⇒ a1a2 . . . an−1An−1 ⇒ a1a2 . . . an.

iff there is a sequence of variables A1,A2, . . . ,An−1 with
iff A1 ∈ δ(S , a1),A2 ∈ δ(A1, a2), . . . ,X ∈ δ(An−1, an).

iff w ∈ L(M).

Case w = ε is also covered because S ∈ F iff S → ε ∈ R.



Introduction Epsilon Rules Finite Automata Summary

Finite Automata and Regular Languages

DFA

regular grammar

NFA

In particular, this implies:

Corollary

L regular ⇐⇒ L is recognized by a DFA.
L regular ⇐⇒ L is recognized by an NFA.



Introduction Epsilon Rules Finite Automata Summary

Questions

Questions?



Introduction Epsilon Rules Finite Automata Summary

Summary



Introduction Epsilon Rules Finite Automata Summary

Summary

Regular grammars restrict the usage of ε in rules.

This restriction is not necessary for the characterization of
regular languages but convenient if we want to prove
something for all regular languages.

Finite automata (DFAs and NFAs) recognize exactly the
regular languages.


	Introduction
	

	Epsilon Rules
	

	Finite Automata
	

	Summary

