Theory of Computer Science

B3. Regular Languages

Gabriele Roger

University of Basel

March 16, 2022

Introduction

Introduction Epsilon R Finite Automata Summary

0O@0000 o

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (V, X, R, S) with
m V finite set of variables (nonterminal symbols)
m Y finite alphabet of terminal symbols with VN'YX = ()
B RC(VX(ZUZV))U{(S,¢e)} finite set of rules
mifS—>eceR, thereisno X eV ,yeXwithX—>ySeR
m S € V start variable.

Introduction Finite Automata

0O@0000 000« cooo 00000000

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (V, X, R, S) with
m V finite set of variables (nonterminal symbols)
m Y finite alphabet of terminal symbols with VN'YX = ()
B RC(VX(ZUXV))U{(S,e)} finite set of rules
mifS—>eceR, thereisno X eV ,yeX withX—ySeR
m S € V start variable.)

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.

Introduction

[e]e] lele]e}

Question (Slido)

With a regular grammar, how many steps does it
take to derive a non-empty word (over X) from
the start variable?

Introduction
00000

Repetition: Regular Languages

A language is regular if it is generated by some regular grammar.

Definition (Regular Language)

A language L C X* is regular
if there exists a regular grammar G with £(G) = L.

Introduction
000000

Questions

m How restrictive is the requirement on € rules?
If we don't restrict the usage of € as right-hand side of a rule,
what does this change?

m How do regular languages relate to finite automata?
Can all regular languages be recognized by a finite
automaton? And vice versa?

m With what operations can we “combine” regular languages

and the result is again a regular language?
E.g. is the intersection of two regular languages regular?

Introduction

O0000e

Questions

Questions?

Epsilon Rules
©0000000000000

Epsilon Rules

Epsilon Rules Finite Automata

0@000000000000 0000000

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (V, %, R, S) with
m V finite set of variables (nonterminal symbols)
Y finite alphabet of terminal symbols with VNYX = ()

|

B RC(VX(ZUXV))U{(S.e)} finite set of rules
mifS—>ceR, thereisno X eV ,ye¥withX—>ySeR

m S € V start variable.)

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.

Epsilon Rules Finite Automata

0@000000000000 0000000

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (V, %, R, S) with
m V finite set of variables (nonterminal symbols)
Y finite alphabet of terminal symbols with VNYX = ()

|

B RC(VX(ZUXV))U{(S.e)} finite set of rules
mifS—>ceR, thereisno X eV ,ye¥withX—>ySeR

m S € V start variable.)

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?

Epsilon Rules
00@00000000000

Our Plan

We are going to show that every grammar with rules
RCVx(XuxVUe)

generates a regular language.

Epsilon Rules
000@0000000000

Question

This is much simpler!
Why don’t we define
regular languages
via such grammars?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Epsilon Rules

0000@000000000

Question
%
. - &
Both variants (restricting the occurrence of ¢ on 5’%

the right-hand side of rules or not) characterize
exactly the regular languages.

In the following situations, which variant would you prefer?
m You want to prove something for all regular languages.

m You want to specify a grammar to establish
that a certain language is regular.

m You want to write an algorithm that takes a grammar
for a regular language as input.

Epsilon Rules
00000800000000

Our Plan

We are going to show that every grammar with rules
RCVx(XUuXVUe)

generates a regular language.

m The proof will be constructive, i.e. it will tell us how to
construct a regular grammar for a language
that is given by such a more general grammar.

m Two steps:

@ Eliminate the start variable from the right-hand side of rules.
@ Eliminate forbidden occurrences of ¢.

Introduction Epsilon Rules Finite Automata Summary

000000800000 00

Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start
variable does not occur on the right-hand side of any rule.

For every grammar G = (V, X, R, S) there is a grammar
G'=(V',L,R',S) with rules

R C(VUXD)*V(VUD)* x (V'\{S}UX)* such that
L(G) = L(G).

Note: this theorem is true for all grammars.

Epsilon Rules Finite Automata

0000000e000000

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let’s illustrate its idea.
Consider G = ({S, X}, {a,b}, R,S) with the following rules in R:

bS — ¢ S — XabS bX — aSa X — abc

Epsilon Rules
00000008000000

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let’s illustrate its idea.
Consider G = ({S, X}, {a,b}, R,S) with the following rules in R:

bS — ¢ S — XabS bX — aSa X — abc

The new grammar has all original rules except that S is replaced
with a new variable S’ (allowing to derive everything from S’ that
could originally be derived from the start variable S):

bS — ¢ S’ — Xab$’ bX — aS’a X — abc

Epsilon Rules
00000008000000

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let’s illustrate its idea.
Consider G = ({S, X}, {a,b}, R,S) with the following rules in R:

bS — ¢ S — XabS bX — aSa X — abc

The new grammar has all original rules except that S is replaced
with a new variable S’ (allowing to derive everything from S’ that
could originally be derived from the start variable S):

bS — ¢ S’ — Xab$’ bX — aS’a X — abc

In addition, it has rules that allow to start from the original start
variable but switch to S’ after the first rule application:

S — Xab§'

Introduction Epsilon Rules Finite Automata Summary

00000000 e00000

Start Variable in Right-Hand Side of Rules: Proof

Let G =(V,XL,R,S) be a grammar and S’ ¢ V be a new variable.
Construct rule set R’ from R as follows:

m for every rule r € R, add a rule r’ to R’, where r’ is the result
of replacing all occurences of S in r with S’

m foreveryrule S — w € R, add arule S — w’ to R/, where w/
is the result of replacing all occurences of S in w with S’

Then £(G) = L((VU{S'},%,R',S)). O

v

Introduction Epsilon Rules Finite Automata Summary

00000000 e00000

Start Variable in Right-Hand Side of Rules: Proof

Let G =(V,XL,R,S) be a grammar and S’ ¢ V be a new variable.
Construct rule set R’ from R as follows:

m for every rule r € R, add a rule r’ to R’, where r’ is the result
of replacing all occurences of S in r with S’

m forevery rule S — w € R, add arule S — w’ to R, where w’
is the result of replacing all occurences of S in w with S’

Then £(G) = L((VU{S'},%,R',S)). O

v

Note that the rules in R’ are not fundamentally different from the
rules in R. In particular:

mfRCV x(SUZVU{e}) then R C V' x (ZUTV' U {e}).
m fRCV x(VUE)* then R"C V' x (V' UX)*.

Epsilon Rules
000000000e0000

Epsilon Rules

For every grammar G with rules R C V x (XUXV U {e})
there is a regular grammar G' with L(G) = L(G').

Epsilon Rules Automata Summar
00000000008000 s

Epsilon Rules: Example

Let's again first illustrate the idea.
Consider G = ({S, X, Y}, {a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢

Epsilon Rules Finite At

0000000000 e000

Epsilon Rules: Example

Let's again first illustrate the idea.
Consider G = ({S, X, Y}, {a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢

© The start variable does not occur on a right-hand side. v/

Epsilon Rules
0000000000e000

Epsilon Rules: Example

Let's again first illustrate the idea.
Consider G = ({S, X, Y}, {a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢

© The start variable does not occur on a right-hand side. v/

@ Determine the set of variables that can be replaced with the
empty word: V. ={S,Y}.

Epsilon Rules
0000000000e000

Epsilon Rules: Example

Let's again first illustrate the idea.
Consider G = ({S,X,Y},{a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢

© The start variable does not occur on a right-hand side. v/

@ Determine the set of variables that can be replaced with the
empty word: V. ={S,Y}.

© Eliminate forbidden rules: Y//4/¢

Epsilon Rules
0000000000e000

Epsilon Rules: Example

Let's again first illustrate the idea.
Consider G = ({S,X,Y},{a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢

© The start variable does not occur on a right-hand side. v/

@ Determine the set of variables that can be replaced with the
empty word: V. ={S,Y}.

© Eliminate forbidden rules: Y//4#/¢

@ If a variable from V. occurs in the right-hand side,
add another rule that directly emulates a subsequent
replacement with the empty word: X - aand Y — b

Introduction Epsilon Rules Finite Automata Summary

0000000000080

Epsilon Rules

For every grammar G with rules R C V x (XUXV U {e})
there is a regular grammar G' with L(G) = L(G').

.

Let G=(V,X,R,S) be a grammars.t. RC V x (X UXV U{e}).
Use the previous proof to construct grammar G' = (V/, X R’ S)
st. R CV x (ZUX(V'\{S}Hu{e}) and L(G') = E(G)

Let V. ={A|A—c€ R}

Let R” be the rule set that is created from R’ by removing all rules
of the form A — ¢ (A # S). Additionally, for every rule of the form
B—+xAwithAec V., Be V' xe X weaddarule B— xtoR".

Then G = (V/,%, R",S) is regular and £(G) = £(G"). [

.

Epsilon Rules

000000000000 e0

Questions

Questions?

Introduction Epsilon Rules Finite Automata Summar

)OO0 00000000000008 0000000

Exercise (Slido)

Consider G = ({S,X,Y},{a,b}, R,S) with the
following rules in R:

S—e¢ S — aX
X — aX X — aY
Y — bY Y ¢

m Is G a regular grammar?
m Is £(G) regular?

Finite Automata
©0000000

Finite Automata

Finite Automata
0®000000

Languages Recognized by DFAs are Regular

Every language recognized by a DFA is regular (type 3). I

Introduction es Finite Automata Summary
00000000000000 08000000 00

Languages Recognized by DFAs are Regular

Every language recognized by a DFA is regular (type 3). \

Let M = (Q, X, 4, qo, F) be a DFA.
We define a regular grammar G with £(G) = L(M).

Define G = (Q, X, R, qo) where R contains
m arule g — aq’ for every 6(q,a) = ¢/, and

m arule g — ¢ for every g € F.

(We can eliminate forbidden epsilon rules
as described at the start of the chapter.)

Introduction Eps\lm Rules Finite Automata Summary

0O@000000

Languages Recognized by DFAs are Regular

Every language recognized by a DFA is regular (type 3). \

Proof (continued).

For every w = a1a>...a, € ¥*:

w € L(M)
iff there is a sequence of states qg, g1, .. ., q), with

qb = qo, q, € F and 6(q}_;,a;) =4 forall i € {1,...,n}
iff there is a sequence of variables qg, g1, . . ., g}, with

qp is start variable and we have g = ai1q] = a1a2q5 =
“= 3132...3pq, = aiaz...an.

iff w € £(G) O

Introduction g Finite Automata

Summar

[e]e] le]ele]ele]

Exercise (Slido)

0
1 v 1
OO
0
0

Specify a regular grammar that generates the
language recognized by this DFA.

Finite Automata

[e]e]e] lelelele]

Questions

o

~

Questions?

Finite Automata Summar

[e]e]e]e] lelele)
Question
Is the inverse true as well:
for every regular language, is there a
DFA that recognizes it? That is, are the

\:‘? languages recognized by DFAs exactly
)
= the regular languages?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Question

*

S

Finite Automata

[e]e]ee] lelele]

Is the inverse true as well:
for every regular language, is there a
DFA that recognizes it? That is, are the
languages recognized by DFAs exactly
the regular languages?

Yes!
We will prove this via a detour.

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Introduction Epsilon Rules Finite Automata Summar

Yelelelol 00000 00000800

Regular Grammars are No More Powerful than NFAs

For every regular grammar G there is an NFA M
with £(G) = L(M).

Proof illustration:
Consider G = ({S,A,B}, {a,b}, R,S) with the following rules in R:

S—e S — aA A — aA A — aB
A—a B — bB B—b

Introduction Epsilon Rules Finite Automata Summary

O0000e00

Regular Grammars are No More Powerful than NFAs

For every regular grammar G there is an NFA M
with £(G) = L(M).

.

Let G = (V,X,R,S) be a regular grammar.
Define NFA M = (Q, %, 6, qo, F) with
RQ=VU{X}, X¢gV
Ggo=35
F:{{S,X} ifS—ceR
(X} ifS—c¢R
Bed(Aa)ifA—aBeR
Xeo(Aa)ifA»aeR

.

Introduction silo! es Finite Automata Summary

O0000e00

Regular Grammars are No More Powerful than NFAs

For every regular grammar G there is an NFA M
with £(G) = L(M).

.

Proof (continued).

For every w = a1ay...a, € ¥* with n > 1:

w e L(G)
iff there is a sequence on variables A;, As, ..., A,_1 with
S = 1AL = a1a2A = - = 3132 ...ap-1An—1 = 3132 ... a,.
iff there is a sequence of variables A1, Ay, ..., A,_1 with
A € 5(5,31),/\2 € 5(A1, 32), o, XE 6(A,,_1,a,,).
iff w € L(M).
Case w = ¢ is also covered because S € F iff S — ¢ € R. O

A

on Rule Finite Automata

00000080

Finite Automata and Regular Languages

regular grammar

DFA NFA

In particular, this implies:

L regular <> L is recognized by a DFA.
L regular <> L is recognized by an NFA.

Finite Automata

O000000e

Questions

o

~

Questions?

[Je]

Summary

Summary

Summary

m Regular grammars restrict the usage of ¢ in rules.

m This restriction is not necessary for the characterization of
regular languages but convenient if we want to prove
something for all regular languages.

m Finite automata (DFAs and NFAs) recognize exactly the
regular languages.

oe

	Introduction
	

	Epsilon Rules
	

	Finite Automata
	

	Summary

