Theory of Computer Science
B1. Finite Automata

Gabriele Roger

University of Basel

February 28/March 2, 2022

Introduction

Introduction
000

Course Contents

Parts of the course:

A. background
> mathematical foundations and proof techniques
B. automata theory and formal languages
(Automatentheorie und formale Sprachen)
> What is a computation?
C. Turing computability (Turing-Berechenbarkeit)
> What can be computed at all?
D. complexity theory (Komplexitatstheorie)
> What can be computed efficiently?
E. more computability theory (mehr Berechenbarkeitheorie)
> Other models of computability

Introduction
000

Course Contents

Parts of the course:

A. background
> mathematical foundations and proof techniques
B. automata theory and formal languages
(Automatentheorie und formale Sprachen)
> What is a computation?
C. Turing computability (Turing-Berechenbarkeit)
> What can be computed at all?
D. complexity theory (Komplexitatstheorie)
> What can be computed efficiently?
E. more computability theory (mehr Berechenbarkeitheorie)
> Other models of computability

Introduction
00®0

A Controller for a Turnstile

m simple access control
m card reader and push sensor
m card can either be valid or invalid

CC BY-SA 3.0, author: Stolbovsky

Introduction
00®0

A Controller for a Turnstile

m simple access control
m card reader and push sensor
m card can either be valid or invalid

CC BY-SA 3.0, author: Stolbovsky

validcard,
invalidcard

push,
invalidcard

validcard

Introduction A and Formal Languages) A As Summary

[eJe]e]]

m Finite automata are a good model for computers
with very limited memory.
Where can the turnstile controller store information
about what it has seen in the past?

m We will not consider automata that run forever
but that process a finite input sequence and
then classify it as accepted or not.

m Before we get into the details, we need some background on
formal languages to formalize what is a valid input sequence.

Alphabets and Formal Languages
©0000

Alphabets and Formal Languages

Introduction Alphabets and Formal Languages /
006 00000 00000000000

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet X is a finite non-empty set of symbols.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Y ={a,b}

Introduction Alphabets and Formal Languages DFAs
0000 0®000

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet X is a finite non-empty set of symbols.

A word over ¥ is a finite sequence of elements from .

The empty word (the empty sequence of elements) is denoted by «.
> * denotes the set of all words over X.

Y (= Z*\ {e}) denotes the set of all non-empty words over ¥.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

= {aa b}
Y* ={e,a,b,aa,ab,ba,bb,...}

Introduction Alphabets and Formal Languages DFAs
0000 0®000

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet X is a finite non-empty set of symbols.

A word over ¥ is a finite sequence of elements from .

The empty word (the empty sequence of elements) is denoted by «.
> * denotes the set of all words over X.

Y (= Z*\ {e}) denotes the set of all non-empty words over ¥.

We write |w/| for the length of a word w.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Y ={a,b}
Y* ={e,a,b,aa,ab,ba,bb,...}
laba| = 3,|b| =1,|e| =0

Introduction Alphabets and Formal Languages DFAs
0000 0®000

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet X is a finite non-empty set of symbols.

A word over ¥ is a finite sequence of elements from .

The empty word (the empty sequence of elements) is denoted by «.
> * denotes the set of all words over X.

Y (= Z*\ {e}) denotes the set of all non-empty words over ¥.

We write |w/| for the length of a word w.

A formal language (over alphabet ¥) is a subset of X*.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Y ={a,b}
Y* ={e,a,b,aa,ab,ba,bb,...}
laba| = 3,|b| =1,|e| =0

Alphabets and Formal Languages A D As Summary

[e]e] lo]e}

Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"

Alphabets and Formal Languages A D As Summary

[e]e] lo]e}

Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"
mS ="

uction Alphabets and Formal Languages D

[e]e] lo]e}

Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"
mS ="
m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }

Introduction Alphabets and Formal Languages DFAs DFAs vs. NFAs Summary

[e]e] lo]e}

Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"

ES=X"
m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }
] 54 = {8}

Introduction Alphabets and Formal Languages DFAs DFAs vs. NFAs Summary

[e]e] lo]e}

Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"

mS ="

m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }
m S, ={¢}

B Ss=10

Introduction Alphabets and Formal Languages / / DFAs vs. NFAs Summary

[e]e] lo]e}

Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"

mS ="

m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }
m S, ={¢}

B Ss=10

m S¢ = {w € I* | w contains twice as many as as bs}
= {e, aab, aba, baa, ... }

Introduction Alphabets and Formal Languages / £ DFAs vs. NFAs

[e]e] lo]e}

Summary

Languages: Examples

Example (Languages over ¥ = {a,b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"

mS ="

m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }
m S, ={¢}

B Ss=10

m S¢ = {w € I* | w contains twice as many as as bs}
= {e, aab, aba, baa, ... }

B S ={weXl||w =3}
= {aaa, aab, aba, baa, bba, bab, abb, bbb}

Alphabets and Formal Languages
00000

Exercise (slido)

Consider ¥ = {push, validcard}.
What is |pushvalidcard|?

Alphabets and Formal Languages
ooooe

Questions

o

~

Questions?

DFAs
©0000000000

DFAs

DFAs
0®000000000

Finite Automaton: Example

Introduction Alphabets and Formal Languages DFAs A A Summar

S J O@000000000

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do,

Introduction \ s and Formal Languages DFAs A A Summar

O@000000000

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
g0,

Introduction Alphabets and Formal Languages DFAs A A Summar

S J O@000000000

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, g1,

Introduction Alphabets and Formal Languages DFAs A A Summar

S J O@000000000

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do. g1,

Introduction Alphabets and Formal Languages DFAs A A Summar

S J O@000000000

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, g1, 9o,

Introduction Alphabets and Formal Languages DFAs A A Summar

S J O@000000000

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, g1, qo.

Introduction Alphabets and Formal Languages DFAs A A Summar

S J O@000000000

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
qo, 91, 90, qo.

Introduction Alphabets and Formal Languages DFAs A A Summar

S J O@000000000

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
qdo, 91, 90, qo.

Introduction Alphabets and Formal Languages DFAs A A Summar

S J O@000000000

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, 41, qo. qo. g1,

Introduction Alphabets and Formal Languages DFAs A A Summar

S J O@000000000

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, g1, qo. qo. g1,

Introduction Alphabets and Formal Languages DFAs A A Summar

S J O@000000000

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, 41, qo, qo, 91, 2.

DFAs
00@00000000

Finite Automata: Terminology and Notation

!
OSSO Ot

0

DFAs
00@00000000

Finite Automata: Terminology and Notation

!
OSSO0t

0

m states Q = {qo, 91, 92}

DFAs
00@00000000

Finite Automata: Terminology and Notation

!
OSEmO= Ot

0

m states @ = {qo, g1, G2}
® input alphabet ¥ = {0,1}

m states @ = {qo, g1, G2}
® input alphabet ¥ = {0,1}

m transition function §

table form of §

m states @ = {qo, g1, G2}
® input alphabet ¥ = {0,1}

m transition function §

m start state qg

table form of §

oduction Alphabets and Formal Languages DFAs NFAs As vs As Summar

(oo} 00@00000000

m states Q = {qo, g1, G2} 6(q0,0) = q1
® input alphabet ¥ = {0,1} 9(q0,1) = qo
m transition function ¢ 0(g1,0) = g2
m start state qg 0(q1,1) = qo NP
m accept states {q»} 0(g2,0) = g2
6(q2,1) = qo

Introduction A ets and Formal Languages DFAs

000@0000000

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple
M={(Q,X,J,qo, F) where

Q is the finite set of states

2 is the input alphabet

d: Q x X — Q is the transition function
go € Q is the start state

F C Q is the set of accept states (or final states)

German: deterministischer e_ndlicher Autom_@t, Zustande,
Eingabealphabet, Uberfiihrungs-/Ubergangsfunktion,

Startzustand, Endzustinde

DFAs
00008000000

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in
an accept state.

Introduction Alphabets and Formal Languages DFAs NFA A Summar

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in
an accept state.

Definition (Words Accepted by a DFA)

DFA M = (Q, %, 4, qo, F) accepts the word w = a3 ... a,
if there is a sequence of states g, ..., q, € Q with

Q 9 = qo,
Q (q,_q,a;)) =g/ forall i e {1,...,n} and
Q q,€F.

German: DFA akzeptiert das Wort

and Formal Languages DFAs A As Summary

00000e00000

Example

. ' . accepts: does not accept:

1 (1)8010100 ioo1o1o

5 01000 010001

Introduction Alphabets and Formal Languages DFAs NFA A Summar
o 00000080000)0000 000 9 oo

Exercise (slido)

Consider the following DFA:

b
OB0=0=0
— a1 qz qs3
|/
0E0=0 ”
b,c a a,b,c %

Which of the following words does it accept?

m abc
m ababcb
m babbc

DFAs
00000008000

DFA: Recognized Language

Definition (Language Recognized by a DFA)

Let M be a deterministic finite automaton.
The language recognized by M is defined as
L(M)={w € £* | w is accepted by M}.

DFAs

00000000800

Example

s and Formal Lang s DFAs
00000000800

Example

The DFA recognizes the language
{w € {0,1}* | w ends with 00}.

s and Formal Languages DFAs

00000000080

A Note on Terminology

m In the literature, “accept” and “recognize” are sometimes
used synonymously or the other way around.
DFA recognizes a word or accepts a language.

m We try to stay consistent using the previous definitions
(following the text book by Sipser).

DFAs
00000000008

Questions

o

~

Questions?

NFAs
©00000000000

NFAs

NFAs
000000000000

Nondeterministic Finite Automata

Why are DFAs called
deterministic automata? What are
nondeterministic automata,
then?

Picture courtesy of stockimages / FreeDigitalPhotos.net

s and Formal Languages D NFAs
[e]e] O0@000000000

In what Sense is a DFA Deterministic?

m A DFA has a single fixed state
from which the computation starts.

m When a DFA is in a specific state and reads an input symbol,
we know what the next state will be.

m For a given input, the entire computation is determined.

m This is a deterministic computation.

NFAs
000800000000

Nondeterministic Finite Automata: Example

0,1
*@\E&)@ : @

differences to DFAs:

NFAs

s and Formal Languages D
000800000000

Nondeterministic Finite Automata: Example

0,1
£

differences to DFAs:

m transition function § can lead to
zero or more successor states for the same a € X

NFAs

s and Formal Languages D
o 000800000000

Nondeterministic Finite Automata: Example

0,1

differences to DFAs:

m transition function § can lead to
zero or more successor states for the same a € X

m c-transitions can be taken without “consuming” a symbol
from the input

NFAs

s and Formal Languages D
o 000800000000

Nondeterministic Finite Automata: Example

0,1

differences to DFAs:

m transition function § can lead to
zero or more successor states for the same a € X

m c-transitions can be taken without “consuming” a symbol
from the input

m the automaton accepts a word if there is
at least one accepting sequence of states

Introduction Alphabets and Formal Languages DF/ NFAs A Summar

[e]o]e]e] leleelele]e]e]

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M={(Q,X,d,qo, F) where

Q is the finite set of states
Y is the input alphabet

d:Q x (XU{e}) = P(Q) is the transition function
(mapping to the power set of Q)

go € Q is the start state
F C Q is the set of accept states

German: nichtdeterministischer endlicher Automat

Introduction A ets and Formal Languages DF/ NFAs

[e]o]e]e] leleelele]e]e]

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M={(Q,X,d,qo, F) where

Q is the finite set of states
Y is the input alphabet

d:Q x (XU{e}) = P(Q) is the transition function
(mapping to the power set of Q)

go € Q is the start state
m F C Q is the set of accept states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.

NFAs
00000@000000

Accepting Computation: Example

() —= % ° (&)} —2 @ w = 0100

NN/

€

~ computation tree on blackboard

NFAs
00000@000000

Accepting Computation: Example

() —= @ 0 @ 0 @ w = 0100

€

s and Formal Languages D NFAs

O00000e00000

e-closure of a State

For a state g € Q, we write E(q) to denote the set of states that
are reachable from g via e-transitions in 4.

Introduction A ets and Formal Languages DF/ NFAs

O00000e00000

e-closure of a State

For a state g € Q, we write E(q) to denote the set of states that
are reachable from g via e-transitions in 4.

Definition (e-closure)

For NFA M = (Q, X, 0, qo, F) and state g € Q, state p is in the
e-closure E(q) of g iff there is a sequence of states qp, . . ., g, with

Q g =g
Q g/ €0(q._q,¢) forallie{1,...,n} and
Q g, =p)

Introduction A ets and Formal Languages DF/ NFAs

O00000e00000

e-closure of a State

For a state g € Q, we write E(q) to denote the set of states that
are reachable from g via e-transitions in 4.

Definition (e-closure)

For NFA M = (Q, X, 0, qo, F) and state g € Q, state p is in the
e-closure E(q) of g iff there is a sequence of states qp, . . ., g, with
Q =g
Q@ ¢ €d(q._y,¢)forallie{l,...,n} and
Q@ qg,=p)

q € E(q) for every state g

Introduction \lp and Forma) NFAs

NFA: A

Definition (Words Accepted by an NFA)

NFA M = (Q, %, 4, qo, F) accepts the word w = a3 ... a,
if there is a sequence of states g, ..., q, € Q with

Q a5 € E(qo),
@ q; € Uges(q ,,a) E(q) forall i€ {1,...,n} and
Q gq,cF.

Introduction

s and Formal Languages NFAs

000000008000

Example: Accepted Words

0,1
: /O\ o (N0 (=)
—>(9o q1 qz a3
Q\kj/u
e
accepts: does not accept:
0 5
10010100 1001010
01000 010001
y.

Introduction 3 s) NFAs A As Summar

0000000)OO000 O00000000e00

Exercise (slido)

Does this NFA accept input 010107

NFAs
000000000080

NFA: Recognized Language

Definition (Language Recognized by an NFA)

Let M be an NFA with input alphabet .

The language recognized by M is defined as
L(M) ={w € ©* | w is accepted by M}.

and Formal Languages) NFAs As Summary

00000000000 e

Example: Recognized Language

NS 5 @ 0 @ 0 @

Introduction Alphabets and Formal Languages
0000 000 00000000000 000000000008

Example: Recognized Language

0,1
. /O\ o (N o =)
—>(qo q1 a2 q3
N "/
€

The NFA recognizes the language
{w € {0,1}* | w = 0 or w ends with 00}.

DFAs vs. NFAs
0000000

DFAs vs. NFAs

DFAs vs. NFAs
O@000000

DFAs are No More Powerful than NFAs

Observation
Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition
d(g,a) = ¢ with 5(q,a) = {q'}.

DFAs vs. NFAs
[e]e] lelele]le]e]

Question

DFAs are
no more powerful than NFAs.
But are there languages
that can be recognized
by an NFA but not by a DFA?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

DFAs vs. NFAs
[e]e]e] lelelele]

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

Ilm Ju tion -\I\ bhabets and Formal Languages DFAs As DFAs vs. NFAs Summar

[e]e]e] le]elele)

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can
convert an NFA to an equivalent DFA. Let's first have a look at
the idea by means of an example (on the blackboard).

DFAs vs. NFAs
[ee]e]e] Telele]

Conversion of an NFA to an Equivalent DFA: Example

0,1

Summary

DFAs vs. NFAs
00000000

Intr du tion r—\I;h bets and Formal Langua

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

=(Q,X%,d, qo, F) we can construct

For every NFA M =
a DFA M' =(Q', %, ¢, qp, F') with L(M) = L(M’).

Here M’ is defined as follows:
B Q :=P(Q) (the power set of Q)

= qo = E(qo)
m F:={QCQ|ANF#0}
m Forall Q€ Q" §'(Q,a) := Ugeq Uges(q.0) E(G)

.

Introduction Alp

NFAs are No More Powe

DFAs DFAs vs. NFAs Summary
00000000000 000000000000 0O0000e00 ole)

rful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

For every w = a1ay...a, € ¥*:

w € L(M)
iff there is a sequence of states pg, p1, ..., pn With
po € E(qo), pn € F and
Pi € Uges(pr 1,0 E(q) forall i € {1,..., n}
iff there is a sequence of subsets Qp, 91, ..., 9, with
Qo =qp Qn € F and §'(Qj_1,a;) = Q; forall i € {1,...,n}
iff w e L(M) O]

V.

Introduction Alphabets and Formal Languages / NFA DFAs vs. NFAs
0000 felele ofe 00 O 00000000

NFAs are More Compact

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

Inm dum on ~\I habets and Formal Languages / DFAs vs. NFAs

[e]e]o]e]e]e] o)

NFAs are More Compact than DFAs

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Ly can be accepted by an NFA with k + 1 states:

0,1

Intr (“ILU on r—\Iph abets and Formal Languages £ / DFAs vs. NFAs Summary

[e]e]o]e]e]e] o)

NFAs are More Compact than DFAs

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Ly can be accepted by an NFA with k + 1 states:

0,1

0 /N 01 /N 01 0,1 O

—>(9o q1 q2 9k
6 / N

There is no DFA with less than 2% states that accepts Ly
(without proof).

Intr dllL_t\()H r—\Iph abets and Formal Languages / / DFAs vs. NFAs Summary

[e]e]o]e]e]e] o)

NFAs are More Compact than DFAs

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Ly can be accepted by an NFA with k + 1 states:

0,1

0 /N 01 /N 01 0,1 O

—>(9o q1 q2 9k
6 / N

There is no DFA with less than 2% states that accepts Ly
(without proof).

NFAs can often represent languages more compactly than DFAs.

DFAs vs. NFAs
0000000

Questions

o

~

Questions?

[Je]

Summary

s and Formal Languages A As Summary

oe

Summary

m DFAs are automata where every state transition
is uniquely determined.

m NFAs can have zero, one or more transitions
for a given state and input symbol.

m NFAs can have e-transitions that can be taken without
reading a symbol from the input.

m NFAs accept a word if there is at least one
accepting sequence of states.

m DFAs and NFAs accept the same languages.

	Introduction
	

	Alphabets and Formal Languages
	

	DFAs
	

	NFAs
	

	DFAs vs. NFAs
	

	Summary
	

