Theory of Computer Science
B1. Finite Automata

Gabriele Roger

University of Basel

February 28/March 2, 2022

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 1/43

Theory of Computer Science
February 28/March 2, 2022 — B1. Finite Automata

B1.1 Introduction

B1.2 Alphabets and Formal Languages
B1.3 DFAs

B1.4 NFAs

B1.5 DFAs vs. NFAs

B1.6 Summary

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022

2 /43

B1. Finite Automata Introduction

B1.1 Introduction

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 3/43

B1. Finite Automata Introduction

Course Contents

Parts of the course:

A. background
> mathematical foundations and proof techniques

B. automata theory and formal languages
(Automatentheorie und formale Sprachen)
> What is a computation?

C. Turing computability (Turing-Berechenbarkeit)
> What can be computed at all?

D. complexity theory (Komplexitdtstheorie)
> What can be computed efficiently?

E. more computability theory (mehr Berechenbarkeitheorie)
> Other models of computability

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022

4/ 43

B1. Finite Automata Introduction

A Controller for a Turnstile

» simple access control
» card reader and push sensor
P card can either be valid or invalid

CC BY-SA 3.0, author: Stolbovsky

push, validcard,
invalidcard validcard invalidcard

push

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 5 /43

B1. Finite Automata Introduction

» Finite automata are a good model for computers
with very limited memory.
Where can the turnstile controller store information
about what it has seen in the past?

» We will not consider automata that run forever
but that process a finite input sequence and
then classify it as accepted or not.

> Before we get into the details, we need some background on
formal languages to formalize what is a valid input sequence.

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 6 /43

B1. Finite Automata Alphabets and Formal Languages

B1.2 Alphabets and Formal
Languages

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 7 /43

B1. Finite Automata Alphabets and Formal Languages

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)
An alphabet ¥ is a finite non-empty set of symbols.

A word over X is a finite sequence of elements from X.

The empty word (the empty sequence of elements) is denoted by ¢.
> * denotes the set of all words over ¥.

Y (= X*\ {e}) denotes the set of all non-empty words over ¥.

We write |w| for the length of a word w.

A formal language (over alphabet ¥) is a subset of L*.
German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Example

Y ={a,b}

Y* ={e,a,b,aa,ab,ba,bb,...}
laba] = 3,|b| =1,]¢| =0

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 8 /43

B1. Finite Automata Alphabets and Formal Languages

Languages: Examples

Example (Languages over ¥ = {a, b})

> S = {a,aa, aaa, aaaa,... } = {a} "

B1. Finite Automata Alphabets and Formal Languages

Exercise (slido)

Consider X = {push, validcard}.
What is |pushvalidcard|?

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 10 / 43

> S =1*
» S3={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }
> S ={e}
> S5 = 0
» S¢ = {w € * | w contains twice as many as as bs}
= {¢, aab, aba, baa, ...}
> S;={weX||w| =3}
= {aaa, aab, aba, baa, bba, bab, abb, bbb }
Gabriele Réger (University of Basel) Theory of Computer Science February 28/March 2, 2022 9 / 43
B1. Finite Automata DFAs

B1.3 DFAs

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 11 /43

B1. Finite Automata DFAs

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do. 491, 9o, 9o, 91, q2.

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 12 / 43

B1. Finite Automata DFAs

Finite Automata: Terminology and Notation

1 4 1
oOSmO= :
0
> states Q@ = {qo, 91, 92} 9(q0,0) = q1
» input alphabet ¥ = {0,1} 0(go,1) = qo
» transition function § 9(q1,0) = q2
> start state qo 5(q1,1) = qo
> accept states {q>} 3(g2,0) = q2
6(g2,1) = qo

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 13 /43

B1. Finite Automata DFAs

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in
an accept state.

Definition (Words Accepted by a DFA)
DFA M = (Q, X, 4, qo, F) accepts the word w = a3 ... a,

if there is a sequence of states qj, ..., q), € Q with
9 9 = qo,
Q (q/_4,a)) =g forallie{1,...,n} and
Qgq,cF.

German: DFA akzeptiert das Wort

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 15 / 43

B1. Finite Automata DFAs
Deterministic Finite Automaton: Definition
Definition (Deterministic Finite Automata)
A deterministic finite automaton (DFA) is a 5-tuple
M= (Q,%,0,qo, F) where
> Q@ is the finite set of states
P> 3 is the input alphabet
> §:Q X X — Q is the transition function
> qo € Q is the start state
> F C Q is the set of accept states (or final states)
German: deterministischer epdlicher Autom.at, Zustande,
Eingabealphabet, Uberfiihrungs-/Ubergangsfunktion,
Startzustand, Endzustiande
Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 14 / 43
B1. Finite Automata DFAs
Example
Example
. v . 2 gécepts: does not accept:
€
@ o .31 10010100 1001010
o 01000 010001
Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 16 / 43

B1. Finite Automata DFAs

Exercise (slido)

Consider the following DFA:

b
c a
b,c a

a,b,c

Which of the following words does it accept?
> abc
> ababcb
> babbc

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 17 / 43

B1. Finite Automata

DFA: Recognized Language

Definition (Language Recognized by a DFA)
Let M be a deterministic finite automaton.
The language recognized by M is defined as
L(M)={w e X* | wis accepted by M}.

DFAs

B1. Finite Automata DFAs
Example
Example
0
1 v 1 .
The DFA recognizes the language
@ 0 .: ' {w € {0,1}* | w ends with 00}.
0

Theory of Computer Science February 28/March 2, 2022 19 / 43

Gabriele Réger (University of Basel)

Gabriele Roger (University of Basel) Theory of Computer Science

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 18 / 43
B1. Finite Automata DFAs
A Note on Terminology
P In the literature, “accept” and “recognize” are sometimes
used synonymously or the other way around.
DFA recognizes a word or accepts a language.
> We try to stay consistent using the previous definitions
(following the text book by Sipser).
February 28/March 2, 2022 20 / 43

B1. Finite Automata NFAs

B1.4 NFAs

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 21 / 43

B1. Finite Automata NFAs

Nondeterministic Finite Automata

Why are DFAs called
deterministic automata? What are
nondeterministic automata,
then?

Picture courtesy of stockimages / FreeDigitalPhotos.net

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 22 / 43

B1. Finite Automata NFAs

In what Sense is a DFA Deterministic?

> A DFA has a single fixed state
from which the computation starts.

» When a DFA is in a specific state and reads an input symbol,
we know what the next state will be.

» For a given input, the entire computation is determined.
» This is a deterministic computation.

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 23 /43

B1. Finite Automata NFAs

Nondeterministic Finite Automata: Example

differences to DFAs:

» transition function ¢ can lead to
zero or more successor states for the same a € &

> c-transitions can be taken without “consuming” a symbol
from the input

> the automaton accepts a word if there is
at least one accepting sequence of states

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 24 /43

B1. Finite Automata NFAs

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)
A nondeterministic finite automaton (NFA) is a 5-tuple
M= (Q,X,d,qo, F) where

> Q@ is the finite set of states

> 3 is the input alphabet

0:Q x(XU{e}) — P(Q) is the transition function
(mapping to the power set of Q)

> qo € Q is the start state
> F C Q is the set of accept states

v

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 25 / 43

B1. Finite Automata

Accepting Computation: Example

0,1
()= é 0 @ 0 @ w = 0100

~~ computation tree on blackboard

NFAs

B1. Finite Automata NFAs

e-closure of a State

For a state g € Q, we write E(q) to denote the set of states that
are reachable from g via e-transitions in 0.

Definition (e-closure)
For NFA M = (Q, ¥, 9, qo, F) and state g € Q, state p is in the
e-closure E(q) of q iff there is a sequence of states qp, ..., g;, with

@ g9 =a
Q@ ¢ €0(q._q.¢)forallie{l,...,n} and
Qq,=p

q € E(q) for every state q

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 27 / 43

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 26 / 43
B1. Finite Automata NFAs
NFA: Accepted Words
Definition (Words Accepted by an NFA)
NFA M = (Q, X, 4, qo, F) accepts the word w = a1 ... a,
if there is a sequence of states qj, ..., q), € Q with
@ qp € E(q),
@ g/ € Uges(q .00 E() forall i€ {1,....n} and
Q@ q,cF.
Theory of Computer Science February 28/March 2, 2022 28 / 43

Gabriele Réger (University of Basel)

B1. Finite Automata NFAs

Example: Accepted Words

B1. Finite Automata NFAs

Exercise (slido)

Does this NFA accept input 010107

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 30 / 43

Example
0,1
1
accepts: does not accept:
0 €
10010100 1001010
01000 010001
Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 29 / 43
B1. Finite Automata NFAs

NFA: Recognized Language

Definition (Language Recognized by an NFA)
Let M be an NFA with input alphabet X.

The language recognized by M is defined as
L(M)={w e X* | wis accepted by M}.

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 31 /43

B1. Finite Automata NFAs

Example: Recognized Language

Example
0,1

The NFA recognizes the language
{w € {0,1}* | w = 0 or w ends with 00}.

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 32 /43

B1. Finite Automata

DFAs vs. NFAs

B1.5 DFAs vs. NFAs

Gabriele Roger (University of Basel)

Theory of Computer Science February 28/March 2, 2022 33 /43

B1. Finite Automata DFAs vs. NFAs

DFAs are No More Powerful than NFAs

Observation
Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition
5(q,a) = q" with 5(q,a) = {q'}.

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 34 /43

B1. Finite Automata

Question

Gabriele Réger (University of Basel)

DFAs vs. NFAs

DFAs are
no more powerful than NFAs.
But are there languages
that can be recognized
by an NFA but not by a DFA?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Theory of Computer Science February 28/March 2, 2022 35 /43

B1. Finite Automata DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can
convert an NFA to an equivalent DFA. Let's first have a look at
the idea by means of an example (on the blackboard).

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 36 / 43

B1. Finite Automata DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can
convert an NFA to an equivalent DFA. Let's first have a look at
the idea by means of an example (on the blackboard).

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 37 / 43

B1. Finite Automata DFAs vs. NFAs

Conversion of an NFA to an Equivalent DFA: Example

B1. Finite Automata DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

Proof.
For every NFA M = (Q, X, 0, qo, F) we can construct
a DFA M’ = (Q',%,5', g}, F') with L(M) = L(M").
Here M' is defined as follows:

> Q' :=P(Q) (the power set of Q)

> gy := E(q0)

> FF:={QCQ|ANF #0}

> Forall Q € Q" §'(Q,a) := Ugeo Uges(q,2) E(G)

Gabriele Roger (University of Basel) Theory of Computer Science February 28 /March 2, 2022 39 /43

0,1
c A 0 m 0
~& N &) c
&€
Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 38 /43
B1. Finite Automata DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

For every w = a1ax...a, € £*:

w € L(M)

iff there is a sequence of states pg, p1, ..., pn wWith
po € E(qo), pn € F and
Pi € Uges(pi_1,0:) E(q) forall i € {1,...,n}

iff there is a sequence of subsets Qq, 91, ..., D, with
Qo=4qp Qn€ F and §'(Qj_1,a;)) = Q, forall i e {1,...,n}
iff w e L(M') O

Gabriele Roger (University of Basel) Theory of Computer Science February 28 /March 2, 2022 40 / 43

B1. Finite Automata

NFAs are More Compact than DFAs

DFAs vs. NFAs

Example
For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Ly can be accepted by an NFA with k + 1 states:

0,1

There is no DFA with less than 2X states that accepts L
(without proof).

NFAs can often represent languages more compactly than DFAs.

Gabriele Roger (University of Basel) Theory of Computer Science February 28 /March 2, 2022 41 / 43

B1. Finite Automata

B1.6 Summary

Gabriele Roger (University of Basel) Theory of Computer Science

February 28/March 2, 2022

Summary

42 / 43

B1. Finite Automata Summary

Summary

» DFAs are automata where every state transition
is uniquely determined.

» NFAs can have zero, one or more transitions
for a given state and input symbol.

> NFAs can have e-transitions that can be taken without
reading a symbol from the input.

» NFAs accept a word if there is at least one
accepting sequence of states.

> DFAs and NFAs accept the same languages.

Gabriele Roger (University of Basel) Theory of Computer Science February 28/March 2, 2022 43 / 43

	Introduction
	

	Alphabets and Formal Languages
	

	DFAs
	

	NFAs
	

	DFAs vs. NFAs
	

	Summary
	

