

Theory of Computer Science

A1. Organizational Matters

Gabriele Röger

University of Basel

February 21, 2022

Theory of Computer Science

February 21, 2022 — A1. Organizational Matters

A1.1 About this Course

A1.2 Organizational Matters

A1.1 About this Course

Main Objectives

We would like to understand what can be computed

- ▶ **in principle**: decidability/computability
- ▶ **efficiently**: complexity theory

Uncomputable Problems?

Consider functions whose inputs are strings:

```
def program_returns_true_on_input(prog_code, input_str):  
    ...  
    # returns True if prog_code run on input_str returns True  
    # returns False if not  
  
def weird_program(prog_code):  
    if program_returns_true_on_input(prog_code, prog_code):  
        return False  
    else:  
        return True
```


What is the return value of `weird_program` if we run it on its own source code?

Why should we Study the Theory of Computation?

► Theory is useful

- If we want to solve a problem with a computer we need to know what is achievable. Computable? Tractable?
- If the problem is not tractable, we might want to consider alternatives, e.g. a tractable variant or an approximation.
- Some theoretical concepts have practical applications, e.g. regular expressions.

► Theory is fun

- Often like a brainteaser: E.g. how can we solve a problem exploiting a solver for some other problem?

Content: Theoretical Foundations of Computer Science

A. background

- ▷ mathematical foundations and proof techniques

B. automata theory and formal languages

(Automatentheorie und formale Sprachen)

- ▷ What is a computation?

C. Turing computability (Turing-Berechenbarkeit)

- ▷ What can be computed at all?

D. complexity theory (Komplexitätstheorie)

- ▷ What can be computed efficiently?

E. more computability theory (mehr Berechenbarkeitstheorie)

- ▷ Other models of computability

Learning Goals

- ▶ understanding the **capabilities and limitations** of computers
- ▶ working with **formal systems**
 - ▶ comprehending formal **definitions and theorems**
 - ▶ **precise formulation** of definitions, theorems and proofs
 - ▶ analyzing formal problems **precisely**

A1.2 Organizational Matters

People

Lecturer

Gabi Röger

- ▶ **email:** gabriele.roeger@unibas.ch
- ▶ **office:** room 04.005, Spiegelgasse 1

Assistant

Liat Cohen

- ▶ **email:** liat.cohen@unibas.ch
- ▶ **office:** room 04.001, Spiegelgasse 5

People

Tutors

Esther Mugdan

- ▶ **email:** `esther.mugdan@unibas.ch`

Florian Pommerening

- ▶ **email:** `florian.pommerening@unibas.ch`
- ▶ **office:** room 04.005, Spiegelgasse 1

Time & Place

Lectures

- ▶ Monday: 14:15–16:00, Kollegienhaus, lecture hall 118
- ▶ Wednesday: 16:15–18:00, Alte Universität, lecture hall -101

Exercise Sessions (starting February 28)

- ▶ Monday 16:15–18:00
- ▶ With Florian in English: Kollegienhaus, lecture hall 118
- ▶ With Esther in German: Alte Universität, lecture hall -201

important: please send Liat an email with your preferred language until **Tuesday 23:59** (February 22).

Exercises

Exercise sheets (homework assignments):

- ▶ mostly theoretical exercises
- ▶ some programming exercises
- ▶ on ADAM every Wednesday
- ▶ may be solved in **groups of 2**
- ▶ due Wednesday the following week
(upload to Adam at <https://adam.unibas.ch/>)
- ▶ submission PDFs must be created with **LATEX**
→ **first exercise meeting: introduction to LATEX**

Exercises

Exercise sessions:

- ▶ discussion of previous exercise sheet
- ▶ questions about current exercise sheet
- ▶ questions about the course
- ▶ discussion of common problems
- ▶ if time: work on the homework assignment
- ▶ participation voluntary but highly recommended

Revised Course Format in 2022

- ▶ previously: 8 CP for lectures and exercises
- ▶ new: 6 CP main course + 2 CP for exercises
- ▶ separate enrolment and evaluation
- ▶ can and should be taken in parallel

Enrolment

- ▶ MOnA: <https://services.unibas.ch/>
- ▶ **deadline:** March 21
- ▶ better today for the course, so that you get all relevant emails and access to the ADAM workspace
- ▶ enrolment for exercise after we made the group assignment

Evaluation of Main Course (6 CP)

- ▶ **written exam**, 6 ECTS credits, graded 1-6
- ▶ June 28, 14:00-16:00 (TBC)
- ▶ admission to exam: **no prerequisites**
- ▶ must **register** for exam during April 4 – April 19
~~ see <https://philnat.unibas.ch/de/examen/>
- ▶ grade for course determined exclusively by the exam
- ▶ if you fail: **one** repeat attempt in FS 2023

Last lecture (June 1): Q&A session for exam preparation

Evaluation of Exercises (2 CP)

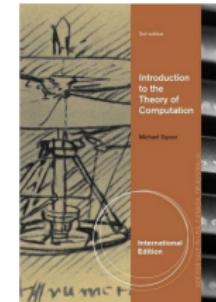
- ▶ pass/fail evaluation
- ▶ to pass the exercises, you need to
 - ▶ pass the **midterm exam** on April 27 (during lecture slot)
 - ▶ achieve **60% of the exercise marks**

Resources

- ▶ **Adam:** central starting point and exercises
<https://adam.unibas.ch/>
- ▶ **Website:** course information, slides
- ▶ **Discord:** for your interaction with each other
feel free to use a pseudonym

Course Material

course material:


- ▶ slides (online)
- ▶ textbooks (see next slides)
- ▶ additional material **on request**

Course Material

Textbooks (English)

Introduction to the Theory of Computation
by Michael Sipser (3rd edition)

- ▶ covers most of the course
- ▶ also contains advanced topics beyond the scope of this course

Textbook (German)

Theoretische Informatik – kurz gefasst
by Uwe Schöning (5th edition)

- ▶ covers quite exactly the course

Prerequisites

- ▶ basic proof techniques
(mathematical induction, proof by contradiction, . . .)
- ▶ basic programming skills

Plagiarism

Plagiarism (Wikipedia)

Plagiarism is the “wrongful appropriation” and “stealing and publication” of another author’s “language, thoughts, ideas, or expressions” and the representation of them as one’s own original work.

consequences:

- ▶ 0 marks for the exercise sheet (first time)
- ▶ exercises failed (second time)

if in doubt: check with us what is (and isn't) OK **before submitting exercises too difficult?** we are happy to help!