
Engineering Route Planning Algorithms�

Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner

Universität Karlsruhe (TH), 76128 Karlsruhe, Germany
{delling,sanders,wagner}@ira.uka.de, mail@dominik-schultes.de

Abstract. Algorithms for route planning in transportation networks
have recently undergone a rapid development, leading to methods that
are up to three million times faster than Dijkstra’s algorithm. We give
an overview of the techniques enabling this development and point out
frontiers of ongoing research on more challenging variants of the problem
that include dynamically changing networks, time-dependent routing,
and flexible objective functions.

1 Introduction

Computing an optimal route in a transportation network between specified
source and target nodes is one of the showpieces of real-world applications of
algorithmics. We frequently use this functionality when planning trips with cars
or public transportation. There are also many applications like logistic planning
or traffic simulation that need to solve a huge number of shortest-path queries in
transportation networks. In the first part of this paper, we focus on the simplest
case, a static road network with a fixed cost for each edge. The cost function
may be any mix of travel time, distance, toll, energy consumption, scenic value,
etc. associated with the edges. Some of the techniques described below work
best if the cost function is positively correlated with travel time. The task is to
compute the costs of optimal paths between arbitrary source-target pairs. Some
preprocessing is allowed but it has to be sufficiently fast and space efficient to
scale to the road network of a continent.

The main part of this paper is Section 2, which explains the ideas behind
several practically successful speedup techniques for exact static routing in road
networks. Section 3 makes an attempt to summarize the development of per-
formance over time. In Section 4 we outline generalizations for public trans-
portation, mobile devices, outputting optimal paths, and dynamically changing
networks. Augmenting static techniques to time-dependent scenarios is discussed
in Section 5, while Section 6 describes some experiences we made with imple-
menting route planning algorithms for large networks. Then, Section 7 explains
our experimental approach giving several examples by applying it to some al-
gorithms we implemented. We conclude in Section 8 with a discussion of future
challenges.
� Partially supported by DFG grants SA 933/1-3, SA 933/5-1, WA 654/16-1 and

the Future and Emerging Technologies Unit of EC (IST priority – 6th FP), under
contract no. FP6-021235-2 (project ARRIVAL). A preliminary version of this paper
has been published in [60].

J. Lerner, D. Wagner, and K.A. Zweig (Eds.): Algorithmics, LNCS 5515, pp. 117–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

118 D. Delling et al.

2 Static Routing

We consider directed graphs G = (V, E) with n nodes and m = Θ(n) edges.
An edge (u, v) has the nonnegative edge weight w(u, v). A shortest-path query
between a source node s and a target node t asks for the minimum weight d(s, t)
of any path from s to t. In static routing, the edge weights do not change so
that it makes sense to perform some precomputations, store their results, and
use this information to accelerate the queries. Obviously, there is some tradeoff
between query time, preprocessing time, and space for preprocessed information.
In particular, for large road networks it would be prohibitive to precompute and
store shortest paths between all pairs of nodes.

2.1 “Classical Results”

Dijkstra’s Algorithm [20] – the classical algorithm for route planning – main-
tains an array of tentative distances D[u] ≥ d(s, u) for each node. The algorithm
visits (or settles) the nodes of the road network in the order of their distance
to the source node and maintains the invariant that D[u] = d(s, u) for visited
nodes. We call the rank of node u in this order its Dijkstra rank rks(u). When
a node u is visited, its outgoing edges (u, v) are relaxed, i.e., D[v] is set to
min(D[v], d(s, u)+w(u, v)). Dijkstra’s algorithm terminates when the target node
is visited. The size of the search space, i.e. the number of settled nodes, is O(n)
and n/2 (nodes) on the average. We will assess the quality of route planning
algorithms by looking at their speedup compared to Dijkstra’s algorithm, i.e.,
how many times faster they can compute shortest-path distances.

Priority Queues. A naive implementation of Dijkstra’s algorithm has a run-
ning time of O(n2) since finding the next node to settle takes O(n) (linear search
of candidates). However, the algorithm can be implemented using O(n) priority
queue operations. In the comparison based model this leads to O(n log n) exe-
cution time. In other models of computation (e.g. [71]) and on the average [47],
better bounds exist. However, in practice the impact of priority queues on per-
formance for large road networks is rather limited since cache faults for accessing
the graph are usually the main bottleneck. In addition, our experiments indicate
that the impact of priority queue implementations diminishes with advanced
speedup techniques that dramatically reduce the queue sizes.

Bidirectional Search executes Dijkstra’s algorithm simultaneously forward
from the source and backwards from the target. Once some node has been visited
from both directions, the shortest path can be derived from the information
already gathered [12]. Bidirectional search can be combined with most other
speedup techniques. On the other hand, it is a necessary ingredient of many
advanced techniques.

Geometric Goal Directed Search (A∗). The intuition behind goal directed
search is that shortest paths ‘should’ lead in the general direction of the tar-
get. A∗ search [32] achieves this by modifying the weight of edge (u, v) to

Engineering Route Planning Algorithms 119

w(u, v) − π(u) + π(v) where π(v) is a lower bound on d(v, t). Note that this
manipulation shortens edges that lead towards the target. Since the added and
subtracted vertex potentials π(v) cancel along any path, this modification of edge
weights preserves shortest paths. Moreover, as long as all edge weights remain
nonnegative, Dijkstra’s algorithm can still be used. The classical way to use A∗

for route planning in road maps estimates d(v, t) based on the Euclidean dis-
tance between v and t and the average speed of the fastest road anywhere in
the network. Since this is a very conservative estimation, the speedup for finding
quickest routes is rather small. Goldberg et al. [25] even report a slow-down of
more than a factor of two since the search space is not significantly reduced but
a considerable overhead is added.

2.2 Exploiting Hierarchy

Small Separators. Transportation networks are almost planar, i.e., most edges
intersect only at nodes. Hence, techniques developed for planar graphs will often
also work for road networks. Using O(n log2 n) space and preprocessing time,
query time O(

√
n log n) can be achieved [22,41] for directed planar graphs with-

out negative cycles. Queries accurate within a factor (1 + ε) can be answered in
near constant time using O((n log n)/ε) space and preprocessing time [70]. Most
of these theoretical approaches look difficult to use in practice since they are
complicated and need superlinear space. The approach from [70] has recently
been implemented and experimentally evaluated on a road network with one
million nodes [52]. While the query times are very good (less than 20μs for ε =
0.01), the preprocessing time and space consumption are quite high (2.5 hours
and 2 GB, respectively).

Multi-Level Techniques. The first published practical approach to fast route
planning [67,68] uses a set of nodes V1 whose removal partitions the graph G =
G0 into small components. Now consider the overlay graph G1 = (V1, E1) where
edges in E1 are shortcuts corresponding to shortest paths in G that do not
contain nodes from V1 in their interior. Routing can now be restricted to G1 and
the components containing s and t respectively. This process can be iterated
yielding a multi-level method [69,35,36,34]. A limitation of this approach is that
the graphs at higher levels become much more dense than the input graphs thus
limiting the benefits gained from the hierarchy. Also, computing small separators
and shortcuts can become quite costly for large graphs.

Reach-Based Routing. Let R(v) := maxs,t∈V Rst(v) denote the reach of node
v where Rst(v) := min(d(s, v), d(v, t)). Gutman [31] observed that a shortest-
path search can be stopped at nodes with a reach too small to get to source or
target from there. Variants of reach-based routing work with the reach of edges
or characterize reach in terms of geometric distance rather than shortest-path
distance. The first implementation had disappointing speedups (e.g. compared
to [67]) and preprocessing times that would be prohibitive for large networks.

120 D. Delling et al.

Highway Hierarchies (HHs) [58,59] group nodes and edges in a hierarchy of
levels by alternating between two procedures: Contraction (i.e., node reduction)
removes low degree nodes by bypassing them with newly introduced shortcut
edges. In particular, all nodes of degree one and two are removed by this pro-
cess. Edge reduction removes non-highway edges, i.e., edges that only appear on
shortest paths close to source or target. More specifically, every node v has a
neighborhood radius r(v) that we are free to choose. An edge (u, v) is a highway
edge if it belongs to some shortest path P from a node s to a node t such that
(u, v) is neither fully contained in the neighborhood of s nor in the neighborhood
of t, i.e., d(s, v) > r(s) and d(u, t) > r(t). In all our experiments, neighborhood
radii are chosen such that each neighborhood contains a certain number H of
nodes. H is a tuning parameter that can be used to control the rate at which the
network shrinks. The query algorithm is very similar to bidirectional Dijkstra
search with the difference that certain edges need not be expanded when the
search is sufficiently far from source or target. HHs were the first speedup tech-
nique that could handle the largest available road networks giving query times
measured in milliseconds. There are two main reasons for this success: Under the
above contraction routines, the road network remains sparse and near planar.
Furthermore, preprocessing can be done using limited local searches starting
from each node which resulted in the fastest preprocessing at that time.

Advanced Reach-Based Routing. It turns out that the preprocessing tech-
niques developed for HHs can be adapted to preprocessing reach information
[26]. This makes reach computation faster and more accurate. More impor-
tantly, shortcuts make queries more effective by reducing the number of nodes
traversed and by reducing the reach-values of the nodes bypassed by shortcuts.
Reach-based routing is slower than HHs both with respect to preprocessing time
and query time. However, the latter can be improved by a combination with
goal-directed search to a point where both methods have similar performance.

Highway-Node Routing (HNR). In [65] the multi-level routing scheme with
overlay graphs [67,69,35,36] is generalized so that it works with arbitrary sets
of nodes rather than only with separators. This is achieved using a new query
algorithm that stalls suboptimal branches of search on lower levels of the hi-
erarchy. By using only important nodes for higher levels, query performance is
comparable to HHs. Preprocessing is done in two phases. In the first phase,
nodes are classified into levels. In the second phase, the shortcuts are recursively
computed bottom up. Shortcuts from level � are found by local searches in level
� − 1 starting from nodes in level �. This second phase is very fast and easy to
update when edge weights change.

Contraction Hierarchies (CHs) are a special case of highway-node routing
where we have n levels – one level for each node [23]. Such a fine hierarchy can
improve query performance by a considerable factor. The queries are also further
simplified since it is sufficient to search upward in a search graph. This property
saves considerable space since each edge is only stored at its lower endpoint.

Engineering Route Planning Algorithms 121

CH preprocessing proceeds in two phases. The first phase orders nodes by im-
portance. The second phase contracts (removes) nodes in this order. When node
v is contracted it is removed from the network in such a way that shortest path
distances between the remaining nodes are preserved. See Fig. 1 for an example.
Local searches are used to decide which of the potential shortcuts of the form
〈u, v, w〉 are needed. In a sense, contraction hierarchies are a simplification of
HHs where only the node contraction phases are used (using a more careful im-
plementation). Node ordering keeps the nodes in a priority queue with priorities
based on how attractive it is to contract a node. The most important term of
the priority function is the edge difference – how many additional edges would
the graph get if a node is contracted (this value may be negative). Another
important priority term ensures that nodes are removed from the networks uni-
formly rather than only in one area of the network. Due to their simplicity and
efficiency, contraction hierarchies are now used in almost all of our advanced
routing techniques.

u

v

w

43

n
o
d
e

o
rd

e
ri

n
g 7

u

v

w

43

n
o
d
e

o
rd

e
ri

n
g 7

Fig. 1. Contraction with node ordering u < v < w. Node u is contracted by adding a
shortcut from v to w and by removing the incoming and outgoing edges of u.

Distance Tables. Once a hierarchical routing technique (e.g., HH, HNR, CH)
has shrunk the size of the remaining network G′ to Θ(

√
n), one can afford to

precompute and store a complete distance table for the remaining nodes [59].
Using this table, one can stop a query when it has reached G′. To compute
the shortest-path distance, it then suffices to lookup all shortest-path distances
between nodes entering G′ in forward and backward search respectively. Since
the number of entrance nodes is not very large, one can achieve a speedup close
to two compared to the underlying hierarchical technique.

Transit-Node Routing precomputes not only a distance table for important
(transit) nodes but also all relevant connections between the remaining nodes
and the transit nodes. Independently, three approaches proved successful for
selecting transit nodes: separators [51,15], border nodes of a partition [3,4,2],
and nodes categorized as important by other speedup techniques [3,4,61]. It
turns out that for route planning in road networks, the latter approach is the
most promising one. Since only about 7–10 such access connections are needed
per node one can ‘almost’ reduce routing in large road networks to about 100
table lookups. Interestingly, the difficult queries are now the local ones where
the shortest path does not touch any transit node. This problem can be solved

122 D. Delling et al.

by introducing several layers of transit nodes. Between lower layer transit nodes,
only those routes need to be stored that do not touch the higher layers. Transit-
node routing (e.g., using appropriate slices of a CH) reduces routing times to a
few microseconds at the price of larger preprocessing time and additional space
consumption.

2.3 Advanced Goal-Directed Search

Edge Labels. The idea behind edge labels is to precompute information for
an edge e that specifies a set of nodes M(e) with the property that M(e) is
a superset of all nodes that lie on a shortest path starting with e. In an s–t
query, an edge e need not be relaxed if t �∈ M(e). In [67], M(e) is specified by an
angular range. More effective is information that can distinguish between long
range and short range edges. In [74] many geometric containers are evaluated.
Very good performance is observed for axis parallel rectangles. A disadvantage
of geometric containers is that they require a complete all-pairs shortest-path
computation. Faster precomputation is possible by partitioning the graph into
k regions that have similar size and only a small number of boundary nodes.
Now M(e) is represented as a k-vector of edge flags [44,43,48,49,63] where flag
i indicates whether there is a shortest path containing e that leads to a node in
region i. Fig. 2 gives an example. Edge flags can be computed using a single-
source shortest-path computation from all boundary nodes of the regions. A
further improvement gets by with only one (though comparatively expensive)
search for each region [33].

SHARC is an extension of the edge flag approach [6]. By using subroutines
from hierarchical approaches—namely contraction—during preprocessing most
of the disadvantages of edge flags can be remedied. The key observation is that it
is sufficient to set suboptimal edge flags to many edges of the graph. Expensive
preprocessing is then only done for important edges. In addition, SHARC extends
the idea of the 2-level edge flag approach presented in [48] to a multi-level arc-
flags setup. The result is a fast unidirectional query algorithm, which is especially
advantageous in scenarios where bidirectional search is prohibitive, e.g. time-
dependent networks (cf. Section 5). In general, SHARC can be interpreted as

1 0 0

1 1 01 1 1

1 1 1 0 0 1

1 1 1

1 1 1

0 1 1

Fig. 2. Example for Arc-Flags. The graph is partitioned in 3 regions.

Engineering Route Planning Algorithms 123

goal-directed technique that incorporates hierarchical aspects implicitely. Even
faster query times can be achieved by a bidirectional version of SHARC.

Landmark A∗ (ALT). Using the triangle inequality, quite strong bounds on
shortest-path distances can be obtained by precomputing distances to a set of
landmark nodes (≈ 20) that are well distributed over the far ends of the network
[25,29]. Using reasonable space and much less preprocessing time than for edge
labels, these lower bounds yield considerable speedup for route planning.

Precomputed Cluster Distances (PCD). In [46], a different way to use pre-
computed distances for goal-directed search is given. The network is partitioned
into clusters and then a shortest connection between any pair of clusters U and
V , i.e., minu∈U,v∈V d(u, v), is precomputed. PCDs cannot be used together with
A∗ search since reduced edge weights can become negative. However, PCDs yield
upper and lower bounds for distances that can be used to prune search. This
gives speedup comparable to landmark-A∗ using less space. Using the many-
to-many routing techniques outlined in Section 4, cluster distances can also be
computed efficiently.

2.4 Combinations

Bidirectional search can be profitably combined with almost all other speedup
techniques. Indeed, it is a required1 ingredient of highway hierarchies, transit-
node routing, highway-node routing and contraction hierarchies and it achieves
a considerable improvement for reach-based routing and edge flags. Willhalm et
al. have made a systematic comparison of combinations of pre-2004 techniques
[38,76,37]. Landmark A∗ harmonizes very well with reach-based routing [26]
whereas it gives only a small additional speedup when combined with HHs [17].

Recently, the combination of edge flags with hierarchical approaches has proved
very successful [8]. Contraction hierarchies combined with edge flags yield query
times almost as low as transit-node routing using less space and preprocessing
time. This large reduction in preprocessing times compared to edge-flags alone
stems from a restriction of the edge-flag computations to a network that is
already considerably contracted. This combination is also quite effective for many
types of networks where hierarchical methods alone work not as well as for road
networks. Edge flags combined with transit-node routing lead to the currently
fastest query times for road networks.

2.5 Differences to Commercial Systems

It turns out that commercial route planning systems and the methods described
above have a lot of things in common but differ in a crucial fact. Like commercial
systems, the methods from Sections 2.2 and 2.3 follow some kind of intuition a
1 However, there are approaches that combine forward search with a type of backward

graph exploration that is not shortest path search. This will become relevant in
Section 5.

124 D. Delling et al.

human uses for traveling in transportation networks. The main difference is that
commercial systems might provide suboptimal results while the latter guarantee
to find the shortest path. Surprisingly, settling for approximate results does not
result in faster query times. In fact, the contrary is true.

For example, a common approach in commercial car navigation systems is the
following: do not look at ‘unimportant’ streets, unless you are close to the source
or target [39]. This heuristic needs careful hand tuning of road classifications to
produce reasonable results but yields considerable speedups. Recalling the con-
cept of highway hierarchies, one might notice that HH follows the same intuition:
after a fixed number of hops, consider only a highway network. It turns out that
one main reason for the better performance of HH compared to the heuristic is
the correctness of the former. The latter has to make a precarious compromise
between quality and size of the search space that relies on manual classification
of the edges into levels of the hierarchy. In contrast, after setting a few quite ro-
bust tuning parameters, HH-preprocessing automatically computes a hierarchy
aggressively tuned for high performance.

3 Chronological Summary – The Horse Race

Although academic research on speedup techniques for Dijkstra’s algorithm
started in the late nineties, motivated from timetable information [67], a boost
in development was the publication of continental-sized road networks in 2005.
The European network was made available for scientific use by the company
PTV AG. The USA network was from publicly available geographical data [72].
Before that, input-sizes were limited and even worse, most data was confidential,
e.g. the timetable data used in [67]. This lead to the problem that it was hard
to compare different approaches with respect to performance. Once large road
networks were available to everybody [58,19] so that speedup techniques became
comparable, a “horse race” started: Which group can achieve the fastest query
(and preprocessing) times on these inputs. In this Section we give a chronological
summary of this race, including techniques that were published before 2005.

However, it is still difficult to compare speedup techniques even for road net-
works because there is a complex tradeoff between query time, preprocessing time
and space consumption that depends on the network, on the objective function,
and on the distribution of queries. Still, we believe that some ranking helps to
compare the techniques. We take the liberty to speculate on the performance of
some older methods that have never been run on such large graphs and whose
actual implementations might fail when one would attempt it. In Tab. 1 we list
speedup techniques in chronological order that are ‘best’ with respect to speedup
for random queries and the largest networks tackled at that point. Sometimes we
list variants with slower query times if they are considerably better with respect
to space consumption or manageable graph size.

Before [67] the best method would have been a combination of bidirectional
search with geometric A∗ yielding speedups of 2–3 over unidirectional Dijkstra.
The separator-based multi-level method from [67] can be expected to work

Engineering Route Planning Algorithms 125

Table 1. Chronological development of the fastest speedup techniques. As date for the
first publication, we usually give the submission deadline of the respective conference.
If available, we always selected measurements for the European road network even if
they were conducted after the first publication. Otherwise, we linearly extrapolated
the preprocessing times to the size of Europe, which can be seen as a lower bound.
Note that not all speedup techniques have been preprocessed on the same machine.
Also note that we report the space consumption of the technique including the graph.

method first date data size space preproc. speedup
pub. mm/yy from n/106 [B/n] [min]

Dijkstra [20] 08/59 - 18 21 0 1
separator multi-level [67] 04/99 [36] 0.1 ? > 5 400 52
edge flags (basic) [44] 03/04 [45] 1 35 299 523
landmark A∗ [25] 07/04 [28] 18 89 13 28
edge flags [43,48] 01/05 [33] 18 30 1 028 3 951
HHs (basic) [58] 04/05 [58] 18 49 161 2 645

reach + shortc. + A∗ [26] 10/05 [28] 18 100 1 625 1 559
[28] 08/06 [28] 18 56 141 3 932

HHs + dist. tab. [59] 04/06 [64] 18 68 13 10 364
HHs + dist. tab. + A∗ [17] 08/06 [64] 18 92 14 12 902
high-perf. multi-level [51] 06/06 [15] 18 181 1 440 401 109
transit nodes (eco) [3] 10/06 [64] 18 140 25 574 727
transit nodes (gen) [3] 10/06 [64] 18 267 75 1 470 231
highway nodes [65] 01/07 [64] 18 28 15 7 437
approx. planar ε = 0.01 [52] 09/07 [52] 1 2 000 150 18 057
SHARC [6] 09/07 [7] 18 34 107 21 800
bidirectional SHARC [6] 09/07 [7] 18 41 212 97 261
contr. hier. (aggr) [23] 01/08 [23] 18 17 32 41 051
contr. hier. (eco) [23] 01/08 [23] 18 21 10 28 350
CH + edge flags (aggr) [8] 01/08 [8] 18 32 99 371 882
CH + edge flags (eco) [8] 01/08 [8] 18 20 32 143 682
transit nodes + edge flags [8] 01/08 [8] 18 341 229 3 327 372
contr. hier. (mobile) [62] 04/08 [62] 18 8 31 9 878

even for large graphs if implemented carefully. Computing geometric contain-
ers [67,74,75] is still infeasible for large networks. Otherwise, they would achieve
much larger speedups than the separator-based multi-level method. Until re-
cently, computing edge flags has also been too expensive for Europe and the USA
but speedups beyond 523 have been observed for a graph with one million nodes
[49]. Landmark A∗ works well for large graphs and achieves average speedup of
28 using reasonable space and preprocessing time [25]. The implementation of
HHs [58] was the first that was able to handle Europe and the USA. This imple-
mentation wins over all previous methods in almost all aspects. A combination
of reach-based routing with landmark A∗ [26] achieved better query times for the
USA at the price of a considerably higher preprocessing time. At first, that code
did not work well on the European network because it is difficult to handle the
present long-distance ferry connections, but later it could be considerably im-
proved [27]. By introducing distance tables and numerous other improvements,

126 D. Delling et al.

highway hierarchies took back the lead in query time [59] at the same time using
an order of magnitude less preprocessing time than [58]. The cycle of innovation
accelerated even further in 2006. Müller [51] aggressively precomputes the pieces
of the search space needed for separator-based multi-level routing. At massive ex-
pense of space and preprocessing time, this method can achieve speedups around
400000. (The original implementation cannot directly measure this because it
has large overheads for disk access and parsing of XML-data). Independently,
transit-node routing was developed [3], that lifts the speedup to six orders of
magnitude and completely replaces Dijkstra-like search by table lookups. This
approach was further accelerated by combining transit nodes with edge flags [8],
yielding speedups of over 3 millions.

However, the story was not over because speedup techniques have to fulfill
several properties, in addition to speed, if they should be used in real-world
scenarios: Memory consumption should be as low as possible, simple updating
of preprocessing due to traffic jams should be possible, and speedup techniques
should work in time-dependent networks. Highway-Node Routing [65] and con-
traction hierarchies [23,62] fulfill the first two requirements, while SHARC [6,14]
was developed for the latter scenario. These scenarios are the topic of Sections 4
and 5.

4 Generalizations

Many-to-Many Routing. In several applications we need complete distance
tables between specified sets of source nodes S and target nodes T . For example,
in logistics optimization, traffic simulation, and also within preprocessing tech-
niques [46,3]. Many non-goal-directed bidirectional search methods [67,26,65])
can be adapted in such a way that only a single forward search from each source
node and a single backward search from each target node is needed [42]. The ba-
sic idea is quite simple: Store the backward search spaces. Arrange them so that
each node v stores an array of pairs of the form (t, d(v, t)) for all target nodes
that have v in their backward search space. When a forward search from s settles
a node v, these pairs are scanned and used to update the tentative distance from
s to t. This is very efficient because the intersection between any two forward
and backward search spaces is small and because scanning an array is much
faster than priority queue operations and edge relaxations governing the cost of
Dijkstra’s algorithm. For example, for |S| = |T | =10 000, the implementation in
[23] needs only about 10s.

Outputting Paths. The efficiency of many speedup techniques stems from
introducing shortcut edges and distance table entries that replace entire paths
in the original graph [67,58,26,59,51,3]. A disadvantage of these approaches is
that the search will output only a ‘summary description’ of the optimal path
that involves shortcuts. Fortunately, it is quite straightforward to augment the
shortcuts with information for unpacking them [17,42,3,23,62]. Since one can
afford to precompute unpacked representations of the most frequently needed
long-distance shortcuts, outputting the path turns out to be up to four times
faster than just traversing the edges in the original graph.

Engineering Route Planning Algorithms 127

Mobile Route Planning. Most of the techniques described above can be
adapted to mobile devices such as car navigation systems or cell phones. How-
ever, space is at a premium here and most of the data has to reside on an external
memory device such as flash memory that has high access latencies and where
write accesses are very expensive. Therefore, the first measure is to keep the pri-
ority queue and the nontrivial tentative distances in the fast memory. Goldberg
and Werneck [29] successfully implemented the ALT algorithm on a Pocket PC.
Their largest road network (North America, 29 883 886 nodes) occupies 3 735MB
and a random query takes 329 s. The RE algorithm [31,27] has been implemented
on a mobile device, yielding query times of “a few seconds including path com-
putation and search animation” and requiring “2–3GB for USA/Europe” [24].
Contraction hierarchies have been implemented using careful blocking of nodes
that are often accessed together and using aggressive variable-bitlength encod-
ing for edges and edge weights [62]. This implementation needs only 140 MByte
space for the European network and 69 ms query time on a 330 MHz ARM 11
processor without any preloaded information in the fast memory.

Turn Penalties. On most road crossings, going straight takes less time than,
e.g., turning left. Such turn penalties (and disallowed turns) can be modelled
using edge based routing where road segments become nodes of the graph and
edges connect possible pairs of successive road segments. The disadvantage of this
model is that a naive implementation takes several times more space than node-
based routing. This problem can be circumvented by running logical edge-based
routing based on bidirectional Dijkstra on a node-based physical representation.
A thin interface layer makes an on-the-fly conversion. For a small subset of
important nodes in the edge-based graph, an explicit contraction hierarchy is
computed. The implicit Dijkstra search can switch to a fast contraction-hierarchy
query when the search is covered by important nodes. Thus, most advantages of
both approaches are combined [50,73].

Flexible Objective Functions. The objective function in road networks de-
pends in a complex way on the vehicle (fast, slow, too heavy for certain bridges,
etc.) the behavior and goals of the driver (cost sensitive, thinks he is fast, etc.),
the load, and many other aspects. While the appropriate edge weights can be
computed from a few basic parameters, it is not feasible to perform preprocessing
for all conceivable combinations. Currently, our best answer to this problem is
highway-node routing/contraction hierarchies [65,23]. Assuming that the impor-
tant nodes are important for any reasonable objective function, only the second
phase of preprocessing needs to be repeated. This is an order of magnitude faster
than computing a HH or the node ordering of contraction hierarchies.

Dynamization. In online car navigation, we want to take traffic jams etc. into
account. At first glance, this is fatal for most speedup techniques since even a
single traffic jam can invalidate any of the precomputed information. However,
we can try to selectively update only the information affected by the traffic jam
and/or relevant to the queries at hand. Updating the preprocessing of Geometric
Containers has been analyzed in [75]. By only allowing increases in the sizes of

128 D. Delling et al.

containers, queries stay correct, but performance may be worse than recomputing
the containers from scratch. Landmark A∗ can be dynamized either by noticing
that lower bounds remain valid when edge weights can only increase, or by using
known dynamic graph algorithms for updating the shortest-path trees from the
landmarks [18]. Highway-node routing was originally developed for dynamization
[65]. Indeed, it allows fast and easy updates (2–40ms per changed edge weight
depending on the importance of the edge). Even faster dynamization is possible
by leaving the preprocessed information unchanged and only causing the query
algorithm to descend the hierarchy when it encounters unreliable information.
This approach scales to quite large numbers of delays using an iterative approach
that only takes edges into account that actually affect the current query [64]. In
the meantime this approach has been successfully adapted to mobile contraction
hierarchies, generalizing [62].

Multi-Criteria Routing. The fastest route in transportation networks is often
not the “best” one. For example, users traveling by train may be willing to
accept longer travel times if the number of required transfers is lower or the
cost of a journey with longer duration is cheaper. We end up in a multi-criteria
scenario [53,57,21] in which none of the high-performance approaches developed
in the last years can be applied easily. The adaption of a fast method to this
scenario is one of the main challenges in the near future.

Multimodal Routing. Often, we use more than one transportation network
for traveling. For example, we first use our car to get to the train station, use
the train to get to the airport and finally board a plane. Planning a route in
such a combined network has to fulfill certain constraints, e.g., your own car is
only available at the beginning of the journey or we want to avoid switching
the type of transportation too frequentely. These constraints can be modeled
by adding appropriate labels to each edge [1,34]. Unfortunately, using a fast
routing algorithm in such a label-constrained scenario is very complicated and
hence, another challenging task.

5 Time-Dependency

As already mentioned, most developed techniques require the network to be
static or only allow a small number of updates [65,18]. In practice, however,
travel duration often depends on the departure time. It turns out that efficient
models for routing in almost all transportation systems, e.g., timetable infor-
mation for railways or scheduling for airplanes, are based on time-dependent
networks. Moreover, road networks are not static either: there is a growing body
of data on travel times of important road segments stemming from road-side
sensors, GPS systems inside cars, traffic simulations, etc. Using this data, we
can assign speed profiles to roads. This yields a time-dependent road network.

Switching from a static to a time-dependent scenario is more challenging than
one might expect: The input size increases drastically as travel times on con-
gested motorways change during the day. On the technical side, most static

Engineering Route Planning Algorithms 129

techniques rely on bidirectional search, i.e., a second search is started from the
target. This concept is prohibited in time-dependent scenarios as the arrival
time would have to be known in advance for such a procedure. Moreover, pos-
sible problem statements for shortest paths become even more complex in such
networks. A user could ask at what time she should depart in order to spend as
little time traveling as possible. As a result, none of the existing high-performance
techniques can be adapted to this realistic scenario easily.

5.1 Modeling Issues

The major difference between static and time-dependent routing is the usage
of functions instead of constants for specifying edge weights. We use piece-wise
linear functions for modeling time-dependency in road networks2. Each edge gets
assigned a number of sample points that depict the travel time on this road at
the specific time. Evaluating the travel time for an edge at time τ is then done
by linear interpolation between the points left and right to τ . In order to allow
a polynomial time exact solution [40,56], we assume that the network fulfills the
FIFO property or non-overtaking property : if A leaves an arbitrary node s before
B, B cannot arrive at any node t before A.

Currently, research concentrates on solving the earliest arrival problem in
time-dependent networks, i.e., find the quickest route from s to t for given time
of departure τ . Note that this problem is closely related to the latest departure
problem, i.e., find the quickest route from s to t such that you arrive at t at a
given time τ ′ [13].

Rolling-Out Time-Dependency. Another approach to model time-dependency is
to roll out the time component. In the time-expanded approach for timetable
information [66,54], each time-dependent edge is multiplied such that each edge
represents exactly one connection and a timestamp is assigned to each node.
Although the resulting graphs are time-independent, the main downside of this
approach is the increase in input size. While this is still practicable for timetable
information [53,30], the time-expanded graphs get way too big for road networks.
In addition, adaption of speedup techniques to the time-expanded approach is
more complicated than expected [9]. Hence, the time-dependent approach seems
more promising.

5.2 Basic Algorithmic Toolbox

Analyzing all speedup techniques, preprocessing relies on two major ingredients:
(local) Dijkstra-searches and contraction. Hence, for correct routing in time-
dependent networks, both ingredients need to be augmented.

Generalizing Dijkstra’s Algorithm. A straightforward extension [11] of
Dijkstra’s algorithm is capable of computing the distance between s and t

2 Note that this is flexible enough to accurately integrate time-tabled connections such
as ferries.

130 D. Delling et al.

when departing from s at time τ . However, we may also need to compute a
profile, i.e. the distance between s and t for all departure times. It turns out
that this is more expensive but can be computed by a label-correcting variant
of Dijkstra’s algorithm [13]: distance labels now become functions of time and
edge relaxations compute minima of two time-dependent functions; nodes may
have to be scanned several times when parts of the their distance label improve.
An interesting result from [13] is the fact that the runtime of label-correcting
algorithms highly depends on the complexity of the edge-functions.

Contraction. The second ingredient of high-performance speedup techniques
is contraction (cf. Section 2). Basically, we may leave the principle untouched:
unimportant nodes are removed from the graph and shortcuts are added in order
to preserve distances between remaining nodes. However, contraction in time-
dependent road networks is more expensive, in terms of space consumption, than
in time-independent networks. Let P (f) be the number of interpolation points
of the function f assigned to an edge (u, v). Then the composed function f ⊕ g,
modeling the duration for traversing g after f , may have up to P (f)+P (g) inter-
polation points in the worst case. This is one of the main problems when routing
in time-dependent graphs: Almost all speedup techniques developed for static
scenarios rely on adding long shortcuts to the graph. While this is “cheap” for
static scenarios, the insertion of time-dependent shortcuts yields a high amount
of preprocessed data.

An interesting observation is that in timetable networks, the problem of in-
creasing interpolation does not exist. More precisely, P (f⊕g) = min{P (f), P (g)}
holds as the number of relevant departure times is dominated by the edge with
less connections.

5.3 Adapting Speedup Techniques

Up to now, three different approaches have successfully been adapted to the
time-dependent scenario. They either use a unidirectional search or perform a
backward search that limits the node set the forward search has to visit.

A∗ with landmarks (ALT) was the first natural choice for adaption to time-
dependent scenarios. Like for the dynamic time-independent scenarios, ALT per-
forms correct queries as long as potentials are feasible. So, by using the lower
bound of each edge during preprocessing, ALT-queries stay correct. Unfortu-
nately, a unidirectional variant [18] only leads to a mild speedups of 3–5. A
speedup of 30 can be obtained if we are willing to accept suboptimal paths
being up to 15% longer than the shortest [55]. This can be achieved by a bidi-
rectional approach. Here, a time-independent backward search bounds the node
set that has to be examined by the forward search. This approach can be en-
hanced by performing ALT only on a small core built by contraction during
preprocessing [16].

SHARC. A disadvantage of ALT is its rather small speedup even in static
scenarios. This was the main motivation for the development of SHARC, a uni-
directional speedup technique [6] being as fast as bidirectional approaches. It is

Engineering Route Planning Algorithms 131

based on two foundations: contraction and edge flag computation. An edge flag
is now set as soon as it is important for at least one departure time [14]. As a
result, quickest paths for all departure times between two points have arc-flags
set to true. A straight-forward approach is to compute flags using the label cor-
recting algorithm described above. While this works for large timetable graphs,
preprocessing takes way too long for road networks. By setting suboptimal arc-
flags, preprocessing times can be reduced but for the price of query performance.
Depending on the degree of perturbation, time-dependent SHARC is up to 214
times faster than Dijkstra.

Contraction Hierarchies [5]. Due to their simplicity and good performance,
contraction hierarchies are an interesting candidate for generalization. In the
most simple implementation, the first preprocessing phase (node ordering) can
be done on the static graph. Only the second phase needs to replace ordinary
Dijkstra searches by profile searches. This is straight-forward in principle but
challenging because a naive implementation is very expensive. The query algo-
rithm is slightly less obvious. The simultaneous forward and backward Dijkstra-
searches of the static version are replaced by four activities3: 1. A time dependent
forward-upward Dijkstra-search. 2. Backward exploration of the downward edges
leading to the target. Note that in most other hierarchical search techniques
this weakening of the backward search would imply traversing the entire graph
whereas the DAG (directed acyclic graph) property of contraction hierarchies
makes it possible that only a small subset of the nodes is visited. 3. Pruning of
supoptimal paths (when forward distance plus a lower bound on the distance to
the target exceed some upper bound). 4. A forward-downward Dijkstra search
starting simultaneously from all the promising places where forward search and
backward exploration met that is confined to the edges explored in component 2.
Various forms of upper and lower bounds on travel time can be used to improve
pruning, accelerate preprocessing, and save space.

6 Implementation

Advanced algorithms for routing in road networks require thousands of lines
of well written code and hence require considerable programming skill. In par-
ticular, it is not trivial to make the codes work for large networks. Here is
an incomplete list of problems and complications that we have seen in routing
projects: Graphs have to be glued together from several files. Tools for reading
files crash for large graphs. Algorithm library code cannot handle large graphs
at all. The code slows down several times when switching from a custom graph
representation to an algorithm library. 32-bit code will not work. Libraries do
not work with 64-bit code. Our conclusion from these experiences was to design
our own graph data structures adapted to the problem at hand. We use C++

3 We avoid the term ‘phase’ here since the activities can be interspersed in various
ways.

132 D. Delling et al.

with encapsulated abstract data types. Templates and inline functions make this
possible without performance penalties.

Speedup techniques developed by algorithmicists usually come with high level
arguments why they should yield optimal paths. While this is already much
more robust than purely heuristic algorithms, we sometimes observed that subtle
details only revealed by a detailed correctness proof can yield suboptimal paths.
For example, we had several cases where the algorithm considered was only
correct when all shortest paths are unique.

There are plenty of things that can go wrong both with the algorithms and
their implementations. The implementation can help here with extensive con-
sistency checks in assertions and experiments that are always checked against
naive implementations, i.e., queries are checked against Dijkstra’s algorithm and
fast preprocessing algorithms are checked against naive or old implementations.
On the long run one also needs a flexible visualization tool that can draw pieces
of large graphs, paths, search spaces, and node sets. Since we could not find
tools for this purpose that scale to large road networks, we implemented our
own system [10].

7 Methodology of Experiments

Evaluating speedup techniques on large networks is not as trivial as one might
expect. For example, an obvious choice of queries uses randomly selected node
pairs on the largest available graph. Although the resulting average query time is
a meaningful number, it is not quite satisfactory since most queries will produce
very long paths (thousands of kilometers) that are actually rare in practice. One
possible solution is to use random queries on a variety of subgraphs. However,
this leads to a plethora of arbitrary choices that make it difficult to compare
results. In particular, authors will be tempted to choose only those subgraphs
for which their method performs well.

Sets of real world queries would certainly be interesting, but it is unlikely that
a sample taken from one server is actually representative for the entire spectrum
of route planning applications. We therefore chose a more systematic approach
[58] that has also been adopted in several other studies: We generate a random
query with a specified ‘locality’ r by choosing a random starting node s, and
a target node t with Dijkstra rank rks(t) = r (i.e., the r-th node visited by a
Dijkstra search from s). In our studies, we generate many such queries for each
r which is a power of two. We then plot the distribution with median, quartiles,
and outliers for each of these values of r. For the European road network, Fig. 3
shows the results for contraction hierarchies, CHs combined with edge flags, and
for transit-node routing. We view it as quite important to give information on
the entire distribution since some speedup techniques have large fluctuations in
query time.

In some cases, e.g., for contraction hierarchies, it is also possible to compute
good upper bounds on the search space size of all queries that can ever hap-
pen for a given graph [59,64,23]. Figure 4 gives the upper bounds for contraction

Engineering Route Planning Algorithms 133

●

●●
●
●●●

●
●●
●

●

●
●
●●

●

●

●

●●

●●●●

●

●

●

●

●
●

●

●
●
●
●

●

●
●
●●●

●●●

●●●

●

●●

●

●

●

●●

●

●
●

●

●
●

●
●●

●

●●

●

●●●

●

●

●

●

●
●
●

●

●

●

●
●●●●●
●
●

●
●
●●●●●
●

●
●

●●

●
●●

●

●
●

●●

●
●●
●●
●
●
●

●●
●
●●

●

●

●●
●●●●●

●●●●

●

●●
●●
●●
●
●●

●

●●●●●●
●

●

●

●
●●●
●●

●

●
●●
●

●

●
●●●

●

●
●
●

● ●●

●

●●●●●●●●
●●
●

●

●
●●●
●
●

●

●
●●●

●●●●●●●
●
●●
●
●

●●
●
●
●●
●
●●●●●

●

●●●●
●
●
●
●
●●

●

●

●●
●●

●
●
●
●

● ●●●●●●

●
●●●●
●
●●

●●●●
●
●●●

●●●●

●

●●
●●

●
●
●

●

●●

●
●
●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●
●

●

●

●●

●

●
●●

●●●

●
●●

●
●

●

●

●●●
●●●●
●

●
●
●
●●
●

●
●

●●●

●

●

●

●

●●

●●

●
●●

●

●
●●
●

●

●

●●●

●
●
●●●
●
●●

●

●●
●
●●●
●
●

●●
●

●

● ●
●

●
●

●

●
●

●

●
●
●

●
●●
●

●

●
●●
●
●

●

●
●●●●●●●●●●

●

●

●
●

●

●●●
●●
●

●●

●●
●

●

●●
●
●●

●
●
●

●
●
●●

●

●

●●●

●
●
●●

●
●

●
●

●

●●●
●
●

●●

●
●

●●●
●

●
●
●
●

●●●
●
●
●

●

●
●●

●
●●
●●

●

●●
●
●
●●●
●●
●
●●
●

●

●

●

●
●
●●

●

●●
●
●
●
●●●●●

●
●
●●

●

●●
●
●
●
●
●
●
●

●
●
●●

●
●

●
●

●

●
●
●

●●●●●●
●●
●

●
●
●●●●
●

●●●● ●●●

●

●
●●●●
●
●●
●
●
●

●

●●●

●

●●●●
●●●

●●

●

●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●
●
●●●
●●●●●●
●

●

●

●
●

●●
●

●●●
●
●
●
●

●
●

●
●

●

●

●

●

●●●

●
●
●

●
●●●●●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●●●
●

●

●
●

●●
●
●●●
●

●
●
●●
●

●

●

●

●

●
●

●

●

●
●
●●
●●●●
●

●

●
●

●
●
●●
●
●

●

●
●
●●●
●
●

●

●●●●
●
●
●

●●

●

●●●●
●●●●
●
●
●
●●●●●●
●

●●●
●
●
●
●
●

●●

●●●
●
●

●●●●●●
●

●

●●
●

●●
●●●

●

●
●●●

●
●
●●●●

●
●
●●

●
●●●
●●

●

●●
●

●

●●
●
●
●
●

●
●
●
●
●●
●

●●
●●

●

●

●●●
●
●
●
●● ●●●

●●●●
●

●●●

●
●
●●●●

●

●
●

●
●

●
●●

●

●

●

●
●

●
●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●
●

●●
●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●●
●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●●

●

●
●

●

●

●
●

●
●●

●●

●

●
●●
●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●

●●

●
●
●
●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●●●

●

●
●

●●

●

●●

●

●

●

●
●

●●●

●
●

●
●●
●●●

●

●

●

●

●●●●

●

●

●

●●●●
●●

●

●

●

●
●●●●●
●
●●●●●●
●●

●●

●

●
●

●

●
●
●
●●
●●●●
●
●●
●

●

●
●

●

●●
●
●
●

●

●

●●
●
●●● ●

●
●●
●
●
●●
●

●

●
●

●
●

●
●
●
●
●
●
●
●●
●

●

●●●
●

●

●●●●●

●●

●

●
●

●
●
●●
●●●●●
●●●●

●
●
●
●●● ●●

●
●
●
●
●●
●
●●
●
●●●
●
●●●●●

●

●

●

●
●●●

●●
●
●

●

●
●
●
●
●
●
●●

●
●

●

●
●

●

●
●
●
●
●
●

●
●●
●●●●
●

●
●●
●●●●●
●●

●●●●
●
●●●

●

●

●

●

●

●●●

●

●●●●●●●●●
●
●●●●●●●●●●
●
●

Dijkstra Rank

Q
ue

ry
 T

im
e

[μμ
s]

26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

5
10

20
50

10
0

20
0

contraction hierarchies
ch + edge flags
transit node routing

Fig. 3. Query performance of various speedup techniques against Dijkstra rank. We
observe that adding edge flags to contraction hierarchies accelerates long-range queries,
while transit node routing also accelerates mid-range queries (compared to pure con-
traction hierarchies).

1
10

0
10

−
12

10
−

10
10

−
8

10
−

6
10

−
4

10
−

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

%
 o

f s
ea

rc
he

s

settled nodes

CH aggr.
CH eco.
HNR

maximum →→ 847 1322 2148

Fig. 4. Worst case upper bounds for various hierarchical speedup techniques

134 D. Delling et al.

hierarchies and highway-node routing. We view this as a quite good surrogate
for the absence of meaningful worst case upper bounds that would apply to all
conceivable networks.

8 Conclusions and Open Problems

Speedup techniques for routing in static road networks have made tremendous
progress in the last few years. While for challenging applications such as logis-
tics planning and traffic simulation, query times cannot be fast enough, for other
applications the query times are more than satisfying: other overheads like dis-
playing routes or transmitting them over the network are the bottleneck once
the query time is below a few milliseconds.

A major challenge is to close the gap to theory, e.g., by giving meaningful
characterizations of ‘well-behaved’ networks that allow provably good worst-case
bounds. In particular, we would like to know for which networks the
existing techniques will also work, e.g., for communication networks, VLSI de-
sign, social networks, computer games, graphs derived from geometric routing
problems, . . .

Perhaps the main academic challenge is to go beyond static point-to-point
routing. Although first techniques already provide promising results, the gap
between static and time-dependent routing is still very big. A very impor-
tant topic for the furture is to reduce preprocessing space of time-dependent
techniques. Here, the main problem lies in the mentioned problem that short-
cuts are “cheap” in static scenarios, while in time-dependent scenarios short-
cuts can become highly complex objects. Further beyond that, we want
multi-criteria optimization for individual paths and we want to run realistic
traffic simulations.

Acknowledgements

We would like to thank our coauthors on route planning, Holger Bast, G. Veit
Batz, Reinhard Bauer, Chris Barrett, Keith Bisset, Stefan Funke, Robert
Geisberger, Martin Holzer, Ekkehard Köhler, Goran Konjevod, Sebastian Knopp,
Leo Liberti, Madhav V. Marathe, Domagoj Matijevic, Jens Maue, Rolf Möhring,
Kirill Müller, Matthias Müller-Hannemann, Giacomo Nannicini, EvangeliaPyrga,
Dennis Schieferdecker, Heiko Schilling, Frank Schulz, Christian Vetter, Lars
Volker, Karten Weihe, Thomas Willhalm, and Christos Zaroliagis for their valu-
able contributions. We also had many interesting discussions with Rob van den
Berg, Sebastian Egner, Andrew Goldberg, Joaquim Gromicho, Stefan Hug, Ali
Nowbakht Irani, Riko Jacob, Ulrich Lauther, Ramon Lentink, Dennis Luxen,
Paul Perdon, Martin Pfeifle, Mikkel Thorup, Jaques Verrier, Peter Vortisch, and
Renato Werneck. Finally, we thank PTV AG and HaCon for providing us with
real-world data for scientific use.

Engineering Route Planning Algorithms 135

References

1. Barrett, C., Bisset, K., Holzer, M., Konjevod, G., Marathe, M.V., Wagner, D.:
Engineering Label-Constrained Shortest-Path Algorithms. In: Fleischer, R., Xu, J.
(eds.) AAIM 2008. LNCS, vol. 5034, pp. 27–37. Springer, Heidelberg (2008)

2. Bast, H., Funke, S., Matijevic, D.: TRANSIT Ultrafast Shortest-Path Queries with
Linear-Time Preprocessing. In: Demetrescu, C., Goldberg, A.V., Johnson, D.S.
(eds.) Shortest Paths: Ninth DIMACS Implementation Challenge, DIMACS Book.
American Mathematical Society, Providence (2008) (to appear) (accepted for pub-
lication)

3. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant
Shortest-Path Queries in Road Networks. In: Proceedings of the 9th Workshop
on Algorithm Engineering and Experiments (ALENEX 2007), pp. 46–59. SIAM,
Philadelphia (2007)

4. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast Routing in Road Networks with
Transit Nodes. Science 316(5824), 566 (2007)

5. Batz, G.V., Geisberger, R., Sanders, P.: Time Dependent Contraction Hierarchies
- Basic Algorithmic Ideas. Technical report, ITI Sanders, Faculty of Informatics,
Universität Karlsruhe (TH) (2008), arXiv:0804.3947v1 [cs.DS]

6. Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. In:
Munro, I., Wagner, D. (eds.) Proceedings of the 10th Workshop on Algorithm
Engineering and Experiments (ALENEX 2008), pp. 13–26. SIAM, Philadelphia
(2008)

7. Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. Submit-
ted to the ACM Journal of Experimental Algorithmics (2008) (full paper)

8. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.:
Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s
Algorithm. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 303–318.
Springer, Heidelberg (2008)

9. Bauer, R., Delling, D., Wagner, D.: Experimental Study on Speed-Up Techniques
for Timetable Information Systems. In: Liebchen, C., Ahuja, R.K., Mesa, J.A.
(eds.) Proceedings of the 7th Workshop on Algorithmic Approaches for Trans-
portation Modeling, Optimization, and Systems (ATMOS 2007), pp. 209–225. In-
ternationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany (2007)

10. Bingmann, T.: Visualisierung sehr großer Graphen. Student Research Project
(2006)

11. Cooke, K., Halsey, E.: The Shortest Route Through a Network with Time-
Dependent Intermodal Transit Times. Journal of Mathematical Analysis and Ap-
plications (14), 493–498 (1966)

12. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,
Princeton (1962)

13. Dean, B.C.: Continuous-Time Dynamic Shortest Path Algorithms. Master’s thesis,
Massachusetts Institute of Technology (1999)

14. Delling, D.: Time-Dependent SHARC-Routing. In: Halperin, D., Mehlhorn, K.
(eds.) ESA 2008. LNCS, vol. 5193, pp. 332–343. Springer, Heidelberg (2008)

15. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-Performance
Multi-Level Routing. In: Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.)
Shortest Paths: Ninth DIMACS Implementation Challenge, DIMACS Book.
American Mathematical Society, Providence (2008) (to appear) (accepted for
publication)

136 D. Delling et al.

16. Delling, D., Nannicini, G.: Bidirectional Core-Based Routing in Dynamic Time-
Dependent Road Networks. In: Proceedings of the 19th International Sympo-
sium on Algorithms and Computation (ISAAC 2008). LNCS. Springer, Heidelberg
(2008) (to appear)

17. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway Hierarchies Star. In:
Demetrescu, et al. (eds.) [19]

18. Delling, D., Wagner, D.: Landmark-Based Routing in Dynamic Graphs. In: Deme-
trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg (2007)

19. Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): 9th DIMACS Implementa-
tion Challenge - Shortest Paths (November 2006)

20. Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik 1, 269–271 (1959)

21. Disser, Y., Müller-Hannemann, M., Schnee, M.: Multi-Criteria Shortest Paths in
Time-Dependent Train Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS,
vol. 5038, pp. 347–361. Springer, Heidelberg (2008)

22. Fakcharoenphol, J., Rao, S.: Planar Graphs, Negative Weight Edges, Shortest
Paths, and near Linear Time. Journal of Computer and System Sciences 72(5),
868–889 (2006)

23. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

24. Goldberg, A.: Personal communication (2008)

25. Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A* Search Meets
Graph Theory. In: Proceedings of the 16th Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA 2005), pp. 156–165 (2005)

26. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: Efficient Point-to-Point
Shortest Path Algorithms. In: Proceedings of the 8th Workshop on Algorithm
Engineering and Experiments (ALENEX 2006), pp. 129–143. SIAM, Philadelphia
(2006)

27. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better Landmarks Within Reach. In:
Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 38–51. Springer, Heidelberg
(2007)

28. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: Shortest Path Algo-
rithms with Preprocessing. In: Demetrescu, C., Goldberg, A.V., Johnson, D.S.
(eds.) Shortest Paths: Ninth DIMACS Implementation Challenge, DIMACS Book.
American Mathematical Society, Providence (2008) (to appear) (accepted for pub-
lication)

29. Goldberg, A.V., Werneck, R.F.: Computing Point-to-Point Shortest Paths from
External Memory. In: Proceedings of the 7th Workshop on Algorithm Engineering
and Experiments (ALENEX 2005), pp. 26–40. SIAM, Philadelphia (2005)

30. Gunkel, T., Müller-Hannemann, M., Schnee, M.: Improved Search for Night Train
Connections. In: Liebchen, C., Ahuja, R.K., Mesa, J.A. (eds.) Proceedings of the
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimiza-
tion, and Systems (ATMOS 2007), pp. 243–258. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2007)

31. Gutman, R.J.: Reach-Based Routing: A New Approach to Shortest Path Algo-
rithms Optimized for Road Networks. In: Proceedings of the 6th Workshop on
Algorithm Engineering and Experiments (ALENEX 2004), pp. 100–111. SIAM,
Philadelphia (2004)

Engineering Route Planning Algorithms 137

32. Hart, P.E., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determina-
tion of Minimum Cost Paths. IEEE Transactions on Systems Science and Cyber-
netics 4, 100–107 (1968)

33. Hilger, M., Köhler, E., Möhring, R.H., Schilling, H.: Fast Point-to-Point Shortest
Path Computations with Arc-Flags. In: Demetrescu, C., Goldberg, A.V., Johnson,
D.S. (eds.) Shortest Paths: Ninth DIMACS Implementation Challenge, DIMACS
Book. American Mathematical Society, Providence (2008) (to appear)

34. Holzer, M.: Engineering Planar-Separator and Shortest-Path Algorithms. Ph.D
thesis, Universität Karlsruhe (TH), Fakultät für Informatik (2008)

35. Holzer, M., Schulz, F., Wagner, D.: Engineering Multi-Level Overlay Graphs for
Shortest-Path Queries. In: Proceedings of the 8th Workshop on Algorithm Engi-
neering and Experiments (ALENEX 2006). SIAM, Philadelphia (2006)

36. Holzer, M., Schulz, F., Wagner, D.: Engineering Multi-Level Overlay Graphs for
Shortest-Path Queries. ACM Journal of Experimental Algorithmics (2008) (to ap-
pear)

37. Holzer, M., Schulz, F., Wagner, D., Willhalm, T.: Combining Speed-up Techniques
for Shortest-Path Computations. ACM Journal of Experimental Algorithmics 10
(2006)

38. Holzer, M., Schulz, F., Willhalm, T.: Combining Speed-up Techniques for Shortest-
Path Computations. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS,
vol. 3059, pp. 269–284. Springer, Heidelberg (2004)

39. Ishikawa, K., Ogawa, M., Azuma, M., Ito, T.: Map Navigation Software of the
Electro-Multivision of the 91 Toyoto Soarer. In: Proceedings of the Vehicle Navi-
gation and Information Systems Conference (VNIS 1991), pp. 463–473. IEEE Com-
puter Society, Los Alamitos (1991)

40. Kaufman, D.E., Smith, R.L.: Fastest Paths in Time-Dependent Networks for Intel-
ligent Vehicle-Highway Systems Application. Journal of Intelligent Transportation
Systems 1(1), 1–11 (1993)

41. Klein, P.N.: Multiple-Source Shortest Paths in Planar Graphs. In: Proceedings of
the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2005),
pp. 146–155 (2005)

42. Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Computing Many-
to-Many Shortest Paths Using Highway Hierarchies. In: Proceedings of the 9th
Workshop on Algorithm Engineering and Experiments (ALENEX 2007), pp. 36–
45. SIAM, Philadelphia (2007)

43. Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of Shortest Path and Con-
strained Shortest Path Computation. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS,
vol. 3503, pp. 126–138. Springer, Heidelberg (2005)

44. Lauther, U.: An Extremely Fast, Exact Algorithm for Finding Shortest Paths in
Static Networks with Geographical Background. In: Geoinformation und Mobilität
- von der Forschung zur praktischen Anwendung, vol. 22, pp. 219–230. IfGI prints
(2004)

45. Lauther, U.: An Experimental Evaluation of Point-To-Point Shortest Path Calcu-
lation on Roadnetworks with Precalculated Edge-Flags. In: Demetrescu, C., Gold-
berg, A.V., Johnson, D.S. (eds.) Shortest Paths: Ninth DIMACS Implementation
Challenge, DIMACS Book. American Mathematical Society, Providence (2008) (to
appear)

46. Maue, J., Sanders, P., Matijevic, D.: Goal Directed Shortest Path Queries Us-
ing Precomputed Cluster Distances. In: Àlvarez, C., Serna, M. (eds.) WEA 2006.
LNCS, vol. 4007, pp. 316–327. Springer, Heidelberg (2006)

138 D. Delling et al.

47. Meyer, U.: Single-Source Shortest-Paths on Arbitrary Directed Graphs in Linear
Average-Case Time. In: Proceedings of the 12th Annual ACM–SIAM Symposium
on Discrete Algorithms (SODA 2001), pp. 797–806 (2001)

48. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning
Graphs to Speed Up Dijkstra’s Algorithm. In: Nikoletseas, S.E. (ed.) WEA 2005.
LNCS, vol. 3503, pp. 189–202. Springer, Heidelberg (2005)

49. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning
Graphs to Speedup Dijkstra’s Algorithm. ACM Journal of Experimental Algorith-
mics 11, 2.8 (2006)

50. Müller, K.: Berechnung kürzester Pfade unter Beachtung von Abbiegeverboten.
Student Research Project (2005)

51. Müller, K.: Design and Implementation of an Efficient Hierarchical Speed-up Tech-
nique for Computation of Exact Shortest Paths in Graphs. Master’s thesis, Uni-
versität Karlsruhe (TH), Fakultät für Informatik (June 2006)

52. Muller, L.F., Zachariasen, M.: Fast and Compact Oracles for Approximate Dis-
tances in Planar Graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, pp. 657–668. Springer, Heidelberg (2007)

53. Müller-Hannemann, M., Schnee, M.: Finding All Attractive Train Connections by
Multi-Criteria Pareto Search. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner,
D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 246–
263. Springer, Heidelberg (2007)

54. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable Informa-
tion: Models and Algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner,
D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–90.
Springer, Heidelberg (2007)

55. Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional A* Search for
Time-Dependent Fast Paths. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038,
pp. 334–346. Springer, Heidelberg (2008)

56. Orda, A., Rom, R.: Shortest-Path and Minimum Delay Algorithms in Networks
with Time-Dependent Edge-Length. Journal of the ACM 37(3), 607–625 (1990)

57. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable
Information in Public Transportation Systems. ACM Journal of Experimental Al-
gorithmics 12, Article 2.4 (2007)

58. Sanders, P., Schultes, D.: Highway Hierarchies Hasten Exact Shortest Path Queries.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579.
Springer, Heidelberg (2005)

59. Sanders, P., Schultes, D.: Engineering Highway Hierarchies. In: Azar, Y., Erlebach,
T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)

60. Sanders, P., Schultes, D.: Engineering Fast Route Planning Algorithms. In: Deme-
trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 23–36. Springer, Heidelberg (2007)

61. Sanders, P., Schultes, D.: Robust, Almost Constant Time Shortest-Path Queries in
Road Networks. In: Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.) Short-
est Paths: Ninth DIMACS Implementation Challenge, DIMACS Book. American
Mathematical Society, Providence (2008) (to appear) (accepted for publication)

62. Sanders, P., Schultes, D., Vetter, C.: Mobile Route Planning. In: Halperin, D.,
Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 732–743. Springer, Heidelberg
(2008)

63. Schilling, H.: Route Assignment Problems in Large Networks. Ph.D thesis, Tech-
nische Universität Berlin (2006)

64. Schultes, D.: Route Planning in Road Networks. Ph.D thesis, Universität Karlsruhe
(TH), Fakultät für Informatik (February 2008)

Engineering Route Planning Algorithms 139

65. Schultes, D., Sanders, P.: Dynamic Highway-Node Routing. In: Demetrescu, C.
(ed.) WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)

66. Schulz, F.: Timetable Information and Shortest Paths. Ph.D thesis, Universität
Karlsruhe (TH), Fakultät für Informatik (2005)

67. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s Algorithm On-Line: An Empirical
Case Study from Public Railroad Transport. In: Vitter, J.S., Zaroliagis, C.D. (eds.)
WAE 1999. LNCS, vol. 1668, pp. 110–123. Springer, Heidelberg (1999)

68. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s Algorithm On-Line: An Empirical
Case Study from Public Railroad Transport. ACM Journal of Experimental Algo-
rithmics 5 (2000)

69. Schulz, F., Wagner, D., Zaroliagis, C.: Using Multi-Level Graphs for Timetable
Information in Railway Systems. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002.
LNCS, vol. 2409, pp. 43–59. Springer, Heidelberg (2002)

70. Thorup, M.: Compact Oracles for Reachability and Approximate Distances in Pla-
nar Digraphs. In: Proceedings of the 42nd Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2001), pp. 242–251. IEEE Computer Society
Press, Los Alamitos (2001)

71. Thorup, M.: Integer Priority Queues with Decrease Key in Constant Time and the
Single Source Shortest Paths Problem. In: Proceedings of the 35th Annual ACM
Symposium on the Theory of Computing (STOC 2003), June 2003, pp. 149–158
(2003)

72. U.S. Census Bureau, Washington, DC. UA Census 2000 TIGER/Line Files (2002),
http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html

73. Volker, L.: Route planning in road networks with turn costs. Studienarbeit, Uni-
versität Karlsruhe, Institut für theoretische Informatik (2008)

74. Wagner, D., Willhalm, T.: Geometric Speed-Up Techniques for Finding Shortest
Paths in Large Sparse Graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003.
LNCS, vol. 2832, pp. 776–787. Springer, Heidelberg (2003)

75. Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric Containers for Efficient
Shortest-Path Computation. ACM Journal of Experimental Algorithmics 10, 1.3
(2005)

76. Willhalm, T.: Engineering Shortest Paths and Layout Algorithms for Large Graphs.
Ph.D thesis, Universität Karlsruhe (TH), Fakultät für Informatik (2005)

http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html

	Engineering Route Planning Algorithms
	Introduction
	Static Routing
	``Classical Results''
	Exploiting Hierarchy
	Advanced Goal-Directed Search
	Combinations
	Differences to Commercial Systems

	Chronological Summary – The Horse Race
	Generalizations
	Time-Dependency
	Modeling Issues
	Basic Algorithmic Toolbox
	Adapting Speedup Techniques

	Implementation
	Methodology of Experiments
	Conclusions and Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

