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Zusammenfas:

Countingsort: Idee

»Sortieren durch Zahlen*
m Annahme: Elemente sind aus Bereich 0, ..., k — 1.

m Laufe einmal iiber die Eingabesequenz und zahle dabei,
wie oft jedes Element vorkommt.

m Sei #/ die Anzahl der Vorkommen von Element i.

m lteriere i=0,...,k—1 und
schreibe jeweils #i-mal Element / in die Sequenz.
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Countingsort: Algorithmus

def sort(array, k):
counts = [0] * k # list of k zeros
for elem in array:
counts[elem] += 1

pos = 0
for i in range(k):
occurrences_of_i = counts[i]
for j in range(occurrences_of_i):
10 array[pos + jl =1
11 pos += occurrences_of_i

1
2
3
4
5
6
7
8
9




Nicht vergleichsbasierte Verfahren

000@000000

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros
3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):
10 array[pos + jl =1

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grosse der Eingabesequenz)
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Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros
3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):
10 array[pos + jl =1

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grosse der Eingabesequenz)
— Fiir festes k linear
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Radixsort: ldee

., Sortieren durch Fachverteilen*

m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462
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Radixsort: ldee

., Sortieren durch Fachverteilen*

m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462
m Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96
983 286
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Radixsort: ldee

., Sortieren durch Fachverteilen*

m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

m Teile Zahlen nach letzter Stelle auf:

0 1 2 3 4 5 6 7 8

462 763 96
983 286

Zusammenf.

m Sammle Zahlen von vorne nach hinten/oben nach unten auf

462, 763, 983, 96, 286
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Radixsort: ldee

., Sortieren durch Fachverteilen”
m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

m Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96

983 286

m Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.

Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.

usw. bis alle Stellen betrachtet wurden.
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Radixsort: Beispiel

m Eingabe: 263, 983, 96, 462, 286
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Radixsort: Beispiel

m Eingabe: 263, 983, 96, 462, 286
m Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8 9
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286
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Radixsort: Beispiel

m Eingabe: 263, 983, 96, 462, 286
m Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8 9
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286

m Aufteilung nach vorletzter Stelle:

0 1 2 3 4 5 6 7 8 9
462 983 96
263 286

Aufsammeln ergibt: 462, 263, 983, 286, 96

Zusammenf.
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Radixsort: Beispiel

m Eingabe: 263, 983, 96, 462, 286
m Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286
m Aufteilung nach vorletzter Stelle:

0 1 2 3 4 5 6 7 8
462 983
263 286

Aufsammeln ergibt: 462, 263, 983, 286, 96
m Aufteilung nach drittletzter Stelle:

0 1 2 3 4 5 6 7 8
096 263 462
286

Aufsammeln ergibt: 96, 263, 286, 462, 983

9
96

983

Zusammenf.
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Jupyter-Notebook
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Jupyter-Notebook: radix_sort.ipynb
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Radixsort: Algorithmus (fiir beliebige Basis)

1 def sort(array, base=10):

2 if not array: # array is empty

3 return

4 iteration = 0

5 max_val = max(array) # identify largest element
6 while base ** iteration <= max_val:

7 buckets = [[] for num in range(base)]

8 for elem in array:

9 digit = (elem // (base ** iteration)) 7, base
10 buckets[digit] .append(elem)

11 pos = 0

12 for bucket in buckets:

13 for elem in bucket:

14 array[pos] = elem

15 pos += 1

16 iteration += 1
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Radixsort: Laufzeit

m m: Maximale Anzahl Stellen in Reprdsentation
mit gegebener Basis b.

m n: Lange der Eingabesequenz
m Laufzeit in O(m- (n+ b))
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Radixsort: Laufzeit

m m: Maximale Anzahl Stellen in Reprdsentation
mit gegebener Basis b.

m n: Lange der Eingabesequenz
m Laufzeit in O(m- (n+ b))

Fir festes m und b hat Radixsort lineare Laufzeit.



Zusammenfassung
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Zusammenfassung

m Countingsort und Radixsort sind nicht vergleichsbasiert
und erlauben (unter bestimmten Restriktionen)
ein Sortieren in linearer Zeit.

m Sie machen jedoch zusitzliche Einschrankungen
an die verwendeten Schliissel.
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