Algorithmen und Datenstrukturen
A13. Sortieren: Countingsort & Radixsort

Marcel Liithi and Gabriele Roger
Universitat Basel

30. Marz 2022

Nicht vergleichsbasierte Verfahren

9000000000

Nicht vergleichsbasierte Verfahren

Nicht vergleichsbasierte Verfahren
0e00000000

Sortierverfahren

Vergleichsbasierte
Verfahren

Radixsort

Uberblick und
Ausblick

Nicht vergleichsbasierte Verfahren
00®0000000

Zusammenfas:

Countingsort: Idee

»Sortieren durch Zahlen*
m Annahme: Elemente sind aus Bereich 0, ..., k — 1.

m Laufe einmal iiber die Eingabesequenz und zahle dabei,
wie oft jedes Element vorkommt.

m Sei #/ die Anzahl der Vorkommen von Element i.

m lteriere i=0,...,k—1 und
schreibe jeweils #i-mal Element / in die Sequenz.

Nicht vergleichsbasierte Verfahren
000@000000

Countingsort: Algorithmus

def sort(array, k):
counts = [0] * k # list of k zeros
for elem in array:
counts[elem] += 1

pos = 0
for i in range(k):
occurrences_of_i = counts[i]
for j in range(occurrences_of_i):
10 array[pos + jl =1
11 pos += occurrences_of_i

1
2
3
4
5
6
7
8
9

Nicht vergleichsbasierte Verfahren

000@000000

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros
3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):
10 array[pos + jl =1

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grosse der Eingabesequenz)

Nicht vergleichsbasierte Verfahren

000@000000

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros
3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):
10 array[pos + jl =1

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grosse der Eingabesequenz)
— Fiir festes k linear

Nicht vergleichsbasierte Verfahren
[e]e]e]e] Telelele]e]

Sortierverfahren

Vergleichsbasierte
Verfahren

Countingsort

Uberblick und
Ausblick

Nicht vergleichsbasierte Verfahren

[e]e]e]e]e] le]elele)

Radixsort: ldee

., Sortieren durch Fachverteilen*

m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

Nicht vergleichsbasierte Verfahren Zusammenf.

[e]e]e]e]e] le]elele)

Radixsort: ldee

., Sortieren durch Fachverteilen*

m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462
m Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96
983 286

Nicht vergleichsbasierte Verfahren
00000e0000

Radixsort: ldee

., Sortieren durch Fachverteilen*

m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

m Teile Zahlen nach letzter Stelle auf:

0 1 2 3 4 5 6 7 8

462 763 96
983 286

Zusammenf.

m Sammle Zahlen von vorne nach hinten/oben nach unten auf

462, 763, 983, 96, 286

Nicht vergleichsbasierte Verfahren Zusammenf.

[e]e]e]e]e] le]elele)

Radixsort: ldee

., Sortieren durch Fachverteilen”
m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

m Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96

983 286

m Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.

Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.

usw. bis alle Stellen betrachtet wurden.

Nicht vergleichsbasierte Verfahren
[e]e]e]e]o]e] lolele)

Radixsort: Beispiel

m Eingabe: 263, 983, 96, 462, 286

Nicht vergleichsbasierte Verfahren

[e]e]e]e]o]e] lolele)

Radixsort: Beispiel

m Eingabe: 263, 983, 96, 462, 286
m Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8 9
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286

Nicht vergleichsbasierte Verfahren
0000008000

Radixsort: Beispiel

m Eingabe: 263, 983, 96, 462, 286
m Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8 9
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286

m Aufteilung nach vorletzter Stelle:

0 1 2 3 4 5 6 7 8 9
462 983 96
263 286

Aufsammeln ergibt: 462, 263, 983, 286, 96

Zusammenf.

Nicht vergleichsbasierte Verfahren
0000008000

Radixsort: Beispiel

m Eingabe: 263, 983, 96, 462, 286
m Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286
m Aufteilung nach vorletzter Stelle:

0 1 2 3 4 5 6 7 8
462 983
263 286

Aufsammeln ergibt: 462, 263, 983, 286, 96
m Aufteilung nach drittletzter Stelle:

0 1 2 3 4 5 6 7 8
096 263 462
286

Aufsammeln ergibt: 96, 263, 286, 462, 983

9
96

983

Zusammenf.

Nicht vergleichsbasierte Verfahren
0000000e00

Jupyter-Notebook

@
_
Jupyter
o

Jupyter-Notebook: radix_sort.ipynb

Nicht vergleichsbasierte Verfahren
0000000080

Radixsort: Algorithmus (fiir beliebige Basis)

1 def sort(array, base=10):

2 if not array: # array is empty

3 return

4 iteration = 0

5 max_val = max(array) # identify largest element
6 while base ** iteration <= max_val:

7 buckets = [[] for num in range(base)]

8 for elem in array:

9 digit = (elem // (base ** iteration)) 7, base
10 buckets[digit] .append(elem)

11 pos = 0

12 for bucket in buckets:

13 for elem in bucket:

14 array[pos] = elem

15 pos += 1

16 iteration += 1

Nicht vergleichsbasierte Verfahren Zusammenfassung

000000000 e

Radixsort: Laufzeit

m m: Maximale Anzahl Stellen in Reprdsentation
mit gegebener Basis b.

m n: Lange der Eingabesequenz
m Laufzeit in O(m- (n+ b))

Nicht vergleichsbasierte Verfahren Zusammenfassung

000000000 e

Radixsort: Laufzeit

m m: Maximale Anzahl Stellen in Reprdsentation
mit gegebener Basis b.

m n: Lange der Eingabesequenz
m Laufzeit in O(m- (n+ b))

Fir festes m und b hat Radixsort lineare Laufzeit.

Zusammenfassung

sierte Verfahren Zusammenfassung

oe

Zusammenfassung

m Countingsort und Radixsort sind nicht vergleichsbasiert
und erlauben (unter bestimmten Restriktionen)
ein Sortieren in linearer Zeit.

m Sie machen jedoch zusitzliche Einschrankungen
an die verwendeten Schliissel.

	Nicht vergleichsbasierte Verfahren
	

	Zusammenfassung
	

