
Algorithmen und Datenstrukturen
A13. Sortieren: Countingsort & Radixsort

Marcel Lüthi and Gabriele Röger

Universität Basel

30. März 2022



Nicht vergleichsbasierte Verfahren Zusammenfassung

Nicht vergleichsbasierte Verfahren



Nicht vergleichsbasierte Verfahren Zusammenfassung

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Nicht
vergleichsbasierte

Verfahren

Countingsort

Radixsort

Überblick und
Ausblick



Nicht vergleichsbasierte Verfahren Zusammenfassung

Countingsort: Idee

”
Sortieren durch Zählen“

Annahme: Elemente sind aus Bereich 0, . . . , k − 1.

Laufe einmal über die Eingabesequenz und zähle dabei,
wie oft jedes Element vorkommt.

Sei #i die Anzahl der Vorkommen von Element i .

Iteriere i = 0, . . . , k − 1 und
schreibe jeweils #i-mal Element i in die Sequenz.



Nicht vergleichsbasierte Verfahren Zusammenfassung

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros

3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):

10 array[pos + j] = i

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grösse der Eingabesequenz)
Laufzeit: → Für festes k linear



Nicht vergleichsbasierte Verfahren Zusammenfassung

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros

3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):

10 array[pos + j] = i

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grösse der Eingabesequenz)
Laufzeit: → Für festes k linear



Nicht vergleichsbasierte Verfahren Zusammenfassung

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros

3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):

10 array[pos + j] = i

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grösse der Eingabesequenz)
Laufzeit: → Für festes k linear



Nicht vergleichsbasierte Verfahren Zusammenfassung

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Nicht
vergleichsbasierte

Verfahren

Countingsort

Radixsort

Überblick und
Ausblick



Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Idee

”
Sortieren durch Fachverteilen“

Annahme: Schlüssel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9

462 763
983

96
286

Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.

Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.

usw. bis alle Stellen betrachtet wurden.



Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Idee

”
Sortieren durch Fachverteilen“

Annahme: Schlüssel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9

462 763
983

96
286

Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.

Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.

usw. bis alle Stellen betrachtet wurden.



Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Idee

”
Sortieren durch Fachverteilen“

Annahme: Schlüssel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9

462 763
983

96
286

Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.

Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.

usw. bis alle Stellen betrachtet wurden.



Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Idee

”
Sortieren durch Fachverteilen“

Annahme: Schlüssel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9

462 763
983

96
286

Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.

Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.

usw. bis alle Stellen betrachtet wurden.



Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Beispiel

Eingabe: 263, 983, 96, 462, 286

Aufteilung nach letzter Stelle:
0 1 2 3 4 5 6 7 8 9

462 263
983

96
286

Aufsammeln ergibt: 462, 263, 983, 96, 286

Aufteilung nach vorletzter Stelle:
0 1 2 3 4 5 6 7 8 9

462
263

983
286

96

Aufsammeln ergibt: 462, 263, 983, 286, 96

Aufteilung nach drittletzter Stelle:
0 1 2 3 4 5 6 7 8 9

096 263
286

462 983

Aufsammeln ergibt: 96, 263, 286, 462, 983



Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Beispiel

Eingabe: 263, 983, 96, 462, 286

Aufteilung nach letzter Stelle:
0 1 2 3 4 5 6 7 8 9

462 263
983

96
286

Aufsammeln ergibt: 462, 263, 983, 96, 286

Aufteilung nach vorletzter Stelle:
0 1 2 3 4 5 6 7 8 9

462
263

983
286

96

Aufsammeln ergibt: 462, 263, 983, 286, 96

Aufteilung nach drittletzter Stelle:
0 1 2 3 4 5 6 7 8 9

096 263
286

462 983

Aufsammeln ergibt: 96, 263, 286, 462, 983



Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Beispiel

Eingabe: 263, 983, 96, 462, 286

Aufteilung nach letzter Stelle:
0 1 2 3 4 5 6 7 8 9

462 263
983

96
286

Aufsammeln ergibt: 462, 263, 983, 96, 286

Aufteilung nach vorletzter Stelle:
0 1 2 3 4 5 6 7 8 9

462
263

983
286

96

Aufsammeln ergibt: 462, 263, 983, 286, 96

Aufteilung nach drittletzter Stelle:
0 1 2 3 4 5 6 7 8 9

096 263
286

462 983

Aufsammeln ergibt: 96, 263, 286, 462, 983



Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Beispiel

Eingabe: 263, 983, 96, 462, 286

Aufteilung nach letzter Stelle:
0 1 2 3 4 5 6 7 8 9

462 263
983

96
286

Aufsammeln ergibt: 462, 263, 983, 96, 286

Aufteilung nach vorletzter Stelle:
0 1 2 3 4 5 6 7 8 9

462
263

983
286

96

Aufsammeln ergibt: 462, 263, 983, 286, 96

Aufteilung nach drittletzter Stelle:
0 1 2 3 4 5 6 7 8 9

096 263
286

462 983

Aufsammeln ergibt: 96, 263, 286, 462, 983



Nicht vergleichsbasierte Verfahren Zusammenfassung

Jupyter-Notebook

Jupyter-Notebook: radix sort.ipynb



Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Algorithmus (für beliebige Basis)

1 def sort(array, base=10):

2 if not array: # array is empty

3 return

4 iteration = 0

5 max_val = max(array) # identify largest element

6 while base ** iteration <= max_val:

7 buckets = [[] for num in range(base)]

8 for elem in array:

9 digit = (elem // (base ** iteration)) % base

10 buckets[digit].append(elem)

11 pos = 0

12 for bucket in buckets:

13 for elem in bucket:

14 array[pos] = elem

15 pos += 1

16 iteration += 1



Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Laufzeit

m: Maximale Anzahl Stellen in Repräsentation
mit gegebener Basis b.

n: Länge der Eingabesequenz

Laufzeit in O(m · (n + b))

Für festes m und b hat Radixsort lineare Laufzeit.



Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Laufzeit

m: Maximale Anzahl Stellen in Repräsentation
mit gegebener Basis b.

n: Länge der Eingabesequenz

Laufzeit in O(m · (n + b))

Für festes m und b hat Radixsort lineare Laufzeit.



Nicht vergleichsbasierte Verfahren Zusammenfassung

Zusammenfassung



Nicht vergleichsbasierte Verfahren Zusammenfassung

Zusammenfassung

Countingsort und Radixsort sind nicht vergleichsbasiert
und erlauben (unter bestimmten Restriktionen)
ein Sortieren in linearer Zeit.

Sie machen jedoch zusätzliche Einschränkungen
an die verwendeten Schlüssel.


	Nicht vergleichsbasierte Verfahren
	

	Zusammenfassung
	


