Algorithmen und Datenstrukturen
All. Sortieren: Untere Schranke

Marcel Liithi and Gabriele Roger

Universitat Basel

23. Marz 2022

Untere Schranke an erforderliche Vergleichsoperationen

©0000000000

Untere Schranke an erforderliche
Vergleichsoperationen

Untere Schranke an erforderliche Vergleichsoperationen
0@000000000

Inhalt dieser Veranstaltung

analyse Nicht
— vergleichsbasierte

Fundamentale

_ | Datenstrukturen Verfahren
—| Suchen | | Uberblick und
Ausblick

—‘ Graphen |
—| Strings |

Untere Schranke an erforderliche Vergleichsoperationen
[e]e] lelelelelelele]e)

Sortierverfahren

—| Insertionsort |
—{ Mergesort |
Nicht
vergleichsbasierte
Verfahren
—| Quick Sort |

- —{ Heap Sort |
Uberblick und
Ausblick

Untere Schranke an erforderliche Vergleichsoperationen Zusammenfas:

000e0000000

Fragestellung

m Mergesort hatte bisher mit O(nlog, n) die beste
(Worstcase-)Laufzeit.

m Geht es noch besser?

m Wir zeigen: Nicht mit vergleichsbasierten Verfahren!

Untere Schranke an erforderliche Vergleichsoperationen

0O000@000000

Vorgehen

m Schwierigkeit: Wir kdnnen nicht einen bestimmten
Algorithmus analysieren, sondern miissen eine Aussage iiber
alle moéglichen Verfahren treffen.

Untere Schranke an erforderliche Vergleichsoperationen Zusammenf.

0O000@000000

Vorgehen

m Schwierigkeit: Wir kdnnen nicht einen bestimmten
Algorithmus analysieren, sondern miissen eine Aussage iiber
alle moéglichen Verfahren treffen.

m Vergleichsbasierte Verfahren kdnnen die Eingabe nur anhand
von Schliisselvergleichen analysieren.

Untere Schranke an erforderliche Vergleichsoperationen Zusammenf.

0O000@000000

Vorgehen

m Schwierigkeit: Wir kdnnen nicht einen bestimmten
Algorithmus analysieren, sondern miissen eine Aussage iiber
alle moéglichen Verfahren treffen.

m Vergleichsbasierte Verfahren kdnnen die Eingabe nur anhand
von Schliisselvergleichen analysieren.

m Sie miissen jede Eingabe korrekt sortieren.

Untere Schranke an erforderliche Vergleichsoperationen Zusammenfas:

0O000@000000

Vorgehen

m Schwierigkeit: Wir kdnnen nicht einen bestimmten
Algorithmus analysieren, sondern miissen eine Aussage iiber
alle moéglichen Verfahren treffen.

m Vergleichsbasierte Verfahren kdnnen die Eingabe nur anhand
von Schliisselvergleichen analysieren.

m Sie miissen jede Eingabe korrekt sortieren.

m Daraus konnen wir eine untere Schranke an die Anzahl der
Schliisselvergleiche im worst-case ableiten.

Untere Schranke an erforderliche Vergleichsoperationen Zusammenfassung

0O0000e00000

Abstraktes Verhalten als Baum

Betrachte beliebigen vergleichsbasierten Sortieralgorithmus A.
m Verhalten hdngt nur vom Ergebnis der Schliisselvergleiche ab.

m Bei jedem Schliisselvergleich gibt es zwei M&glichkeiten,
wie der Algorithmus weiter macht.

m Wir konnen das graphisch als Baum darstellen.

Untere Schranke an erforderliche Vergleichsoperationen Zusammenfas:

00000080000

Crashkurs Binarbaume

O

Bindrbaum: jeder Knoten hat hochstens zwei Nachfolger
Knoten ohne Nachfolger heissen Blatter (Bild: eckige Knoten).
Der Knoten ganz oben ist die Wurzel.

Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.

Untere Schranke an erforderliche Vergleichsoperationen Zusammenfas:

00000080000

Crashkurs Binarbaume

O

Bindrbaum: jeder Knoten hat hochstens zwei Nachfolger
Knoten ohne Nachfolger heissen Blatter (Bild: eckige Knoten).
Der Knoten ganz oben ist die Wurzel.

Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.

Die maximale Tiefe eines Blattes in einem Binarbaum
mit k Blattern ist mindestens log, k.

Untere Schranke an erforderliche Vergleichsoperationen

00000008000

Aufgabe (Slido)

gt

Was ist die maximale Tiefe
eines Blattes in diesem Baum?

Untere Schranke an erforderliche Vergleichsoperationen

00000000800

Ergebnis als Permutation

Was muss der Algorithmus kdnnen?
m Annahme: alle Elemente unterschiedlich

m Muss alle Eingaben der Grdsse n korrekt sortieren.

Untere Schranke an erforderliche Vergleichsoperationen Zusammenfa

00000000800

Ergebnis als Permutation

Was muss der Algorithmus kdnnen?
m Annahme: alle Elemente unterschiedlich
m Muss alle Eingaben der Grosse n korrekt sortieren.

m Wir konnen alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden miissen.

m Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.

Beispiel: posO — pos2, posl — posl, pos2 — pos0

Untere Schranke an erforderliche Vergleichsoperationen Zusammenfassung

00000000800

Ergebnis als Permutation

Was muss der Algorithmus kdnnen?
m Annahme: alle Elemente unterschiedlich
m Muss alle Eingaben der Grosse n korrekt sortieren.

m Wir konnen alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden miissen.

m Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.
Beispiel: posO — pos2, posl — posl, pos2 — pos0

m Da alle moglichen Eingaben der Grosse n korrekt geldsst
werden miissen, muss der Algorithmus alle n! moglichen
Permutationen erzeugen kdnnen.

Untere Schranke an erforderliche Vergleichsoperationen Zusammenfa

0000000000

Untere Schranke

m Jedes Blatt in der Baumdarstellung
entspricht einer Permutation.

m Bei Eingabegrosse n muss der Baum also
mindestens n! Blatter haben.

m Die maximale Tiefe des entsprechenden Baumes
ist demnach > log,(n!).

m Es gibt also eine Eingabe der Grosse n mit
> log,(n!) Schliisselvergleichen.

Untere Schranke an erforderliche Vergleichsoperationen
00000000000

Untere Schranke: Abschatzung

Abschéatzung von log,(n!)
m Es gilt n! > (g)g

41=1.2-3 .4 >22
>2 >2

Untere Schranke an erforderliche Vergleichsoperationen

000000000 0e

Untere Schranke: Abschatzung

Abschéatzung von log,(n!)
m Es gilt n! > (g)%
41=1.2-3 .4 >22
>2

m log,(n!)

>

>2

loga((2)3) = 1

(Iog2 n+ Iog %
5(logyn—1)

g(%)
):

5(logy n — log; 2)

Zusammenf.

Untere Schranke an erforderliche Vergleichsoperationen

000000000 0e

Untere Schranke: Abschatzung

Abschéatzung von log,(n!)
m Es gilt n! > (g)g
41=1.2-3 .4 >2°
>2 >2
= logy(n!) > loga((5)2) = 5 loga(3)
= (Iogzn+log 3)=3
S(logyn —1)

Z(logy n — log, 2)

Jeder vergleichsbasierte Sortieralgorithmus benétigt Q(nlog n) viele
Schliisselvergleiche. Damit liegt auch die Laufzeit in Q(nlog n).

Mergesort ist asymptotisch optimal.

Zusammenfassung

Zusammenfassung
oe

Zusammenfassung

m Jedes vergleichsbasierte Sortierverfahren hat
mindestens leicht tberlineare Laufzeit.

	Untere Schranke an erforderliche Vergleichsoperationen
	

	Zusammenfassung
	

