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Fragestellung

m Mergesort hatte bisher mit O(nlog, n) die beste
(Worstcase-)Laufzeit.

m Geht es noch besser?

m Wir zeigen: Nicht mit vergleichsbasierten Verfahren!
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Vorgehen

m Schwierigkeit: Wir kdnnen nicht einen bestimmten
Algorithmus analysieren, sondern miissen eine Aussage iiber
alle moéglichen Verfahren treffen.
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Vorgehen

m Schwierigkeit: Wir kdnnen nicht einen bestimmten
Algorithmus analysieren, sondern miissen eine Aussage iiber
alle moéglichen Verfahren treffen.

m Vergleichsbasierte Verfahren kdnnen die Eingabe nur anhand
von Schliisselvergleichen analysieren.

m Sie miissen jede Eingabe korrekt sortieren.

m Daraus konnen wir eine untere Schranke an die Anzahl der
Schliisselvergleiche im worst-case ableiten.
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Abstraktes Verhalten als Baum

Betrachte beliebigen vergleichsbasierten Sortieralgorithmus A.
m Verhalten hdngt nur vom Ergebnis der Schliisselvergleiche ab.

m Bei jedem Schliisselvergleich gibt es zwei M&glichkeiten,
wie der Algorithmus weiter macht.

m Wir konnen das graphisch als Baum darstellen.
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Crashkurs Binarbaume

O

Bindrbaum: jeder Knoten hat hochstens zwei Nachfolger
Knoten ohne Nachfolger heissen Blatter (Bild: eckige Knoten).
Der Knoten ganz oben ist die Wurzel.

Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.
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Crashkurs Binarbaume
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Bindrbaum: jeder Knoten hat hochstens zwei Nachfolger
Knoten ohne Nachfolger heissen Blatter (Bild: eckige Knoten).
Der Knoten ganz oben ist die Wurzel.

Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.

Die maximale Tiefe eines Blattes in einem Binarbaum
mit k Blattern ist mindestens log, k.
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Aufgabe (Slido)

gt

Was ist die maximale Tiefe
eines Blattes in diesem Baum?
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Ergebnis als Permutation

Was muss der Algorithmus kdnnen?
m Annahme: alle Elemente unterschiedlich

m Muss alle Eingaben der Grdsse n korrekt sortieren.
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Ergebnis als Permutation

Was muss der Algorithmus kdnnen?
m Annahme: alle Elemente unterschiedlich
m Muss alle Eingaben der Grosse n korrekt sortieren.

m Wir konnen alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden miissen.

m Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.

Beispiel: posO — pos2, posl — posl, pos2 — pos0
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Ergebnis als Permutation

Was muss der Algorithmus kdnnen?
m Annahme: alle Elemente unterschiedlich
m Muss alle Eingaben der Grosse n korrekt sortieren.

m Wir konnen alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden miissen.

m Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.
Beispiel: posO — pos2, posl — posl, pos2 — pos0

m Da alle moglichen Eingaben der Grosse n korrekt geldsst
werden miissen, muss der Algorithmus alle n! moglichen
Permutationen erzeugen kdnnen.
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Untere Schranke

m Jedes Blatt in der Baumdarstellung
entspricht einer Permutation.

m Bei Eingabegrosse n muss der Baum also
mindestens n! Blatter haben.

m Die maximale Tiefe des entsprechenden Baumes
ist demnach > log,(n!).

m Es gibt also eine Eingabe der Grosse n mit
> log,(n!) Schliisselvergleichen.
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Untere Schranke: Abschatzung

Abschéatzung von log,(n!)
m Es gilt n! > (g)g

41=1.2-3 .4 >22
>2 >2
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Untere Schranke: Abschatzung

Abschéatzung von log,(n!)
m Es gilt n! > (g)%
41=1.2-3 .4 >22
>2

m log,(n!)

>

>2

loga((2)3) = 1

(Iog2 n+ Iog %
5(logyn—1)

g(%)
):

5(logy n — log; 2)

Zusammenf.



Untere Schranke an erforderliche Vergleichsoperationen

000000000 0e

Untere Schranke: Abschatzung

Abschéatzung von log,(n!)
m Es gilt n! > (g)g
41=1.2-3 .4 >2°
>2 >2
= logy(n!) > loga((5)2) = 5 loga(3)
= (Iogzn+log 3)=3
S(logyn —1)

Z(logy n — log, 2)

Jeder vergleichsbasierte Sortieralgorithmus benétigt Q(nlog n) viele
Schliisselvergleiche. Damit liegt auch die Laufzeit in Q(nlog n).

Mergesort ist asymptotisch optimal.
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Zusammenfassung

m Jedes vergleichsbasierte Sortierverfahren hat
mindestens leicht tberlineare Laufzeit.
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