Algorithmen und Datenstrukturen
AT. Laufzeitanalyse: Bottom-Up-Mergesort

Marcel Liithi and Gabriele Roger

Universitat Basel

16. Mérz 2022

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

16. Marz 2022

1/

Algorithmen und Datenstrukturen
16. Marz 2022 — A7. Laufzeitanalyse: Bottom-Up-Mergesort

AT.1 Laufzeitanalyse Bottom-Up-Mergesort

A7.2 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Mirz 2022

2/16

A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

A7.1 Laufzeitanalyse
Bottom-Up-Mergesort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 16. Marz 2022 3/16

A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Inhalt dieser Veranstaltung

—| Sortieren |
| Fundamentale
Datenstrukturen
s B
—‘ Graphen |
—| Strings |
| Weiterfiihrende
Themen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2022 4 /16

A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Merge-Schritt

1

(&)

3 |

1
2
3
4
5
6
7
8
9

10
11
12

def merge(array, tmp, lo, mid, hi):
i=1lo
j = mid + 1
for k in range(lo, hi + 1): # k = lo,...,ht
if j > hi or (i <= mid and array[i] <= array[jl):
tmp[k] = arrayl[i]

i+=1
else:

tmp [k] = arrayl[j]

j+=1

for k in range(lo, hi + 1): # k = lo,...,ht
array[k] = tmp[k]

Wir analysieren Laufzeit fiir m :=hi—lo+1

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Miarz 2022 5/16

A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Merge-Schritt: Analyse

T(m) =cC +cm-+c3m

> (2 +c)m
Fir m> 1:

T(m) =cCc+com+c3m
<cm+cm+4 cam
=(a+c+a)m

Theorem

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
¢,c’,ng >0, so dass fiir alle n > ng: cn < T(n) < c’n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2022 6 /16

A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Bottom-Up-Mergesort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge (array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

Wir verwenden fiir die Abschatzung:
c1 Zeilen 2—4 Annahme: merge bendtigt

co Zeilen 6 und 12 ca(hi-lo+1) Operationen.
c3 Zeilen 8,9,11

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2022

7/

A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Bottom-Up-Mergesort: Analyse |

Annahme: n = 2 fiir ein k € N5

Iterationen der dusseren Schleife (m fiir hi-lo+1):
» lteration 1: n/2 mal innere Schleife mit Merge fiir m = 2
2+ n/2(c3 4+ 2cs) = ca + 0.5¢c3n + can
» lteration 2: n/4 mal innere Schleife mit Merge fiir m = 4
¢+ n/4(c3 + 4cy) = o + 0.25¢c3n + can

Aussere Schleife endet nach letzter Iteration /.

v

> |teration ¢: 1 mal innere Schleife mit Merge fiir m = n
e+ n/n(cs+ ncy) =+ c3+ can

Insgesamt T(n) < ¢+ ¥(co + csn+ can) < l(c1 + o + 3+ ca)n

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Miarz 2022 8/ 16

Laufzeitanalyse Bottom-Up-Mergesort

A7. Laufzeitanalyse: Bottom-Up-Mergesort

Bottom-Up-Mergesort: Analyse |l

Wie gross ist £7
» In Iteration i ist fiir den Merge-Schritt m = 2/

> In lteration ¢ hat Merge-Schritt m =2¢ =n
» Dan=2Kist { = k = log, n.

Mit ¢ := ¢1 + ¢ + ¢3 + ¢4 erhalten wir T(n) < cnlog, n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

16. Marz 2022

9/

A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Bottom-Up-Mergesort: Analyse Il

Was, wenn n keine Zweierpotenz, also 2k=1 < n < 2k?
» Trotzdem k Iterationen der dusseren Schleife.
» Innere Schleife verwendet nicht mehr Operationen.
» T(n) < cnk = cn(|logy n] +1) < 2cnlog, n (fiirr k > 2)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2022 10 / 16

A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Bottom-Up-Mergesort: Analyse |V

Ahn__liche Abschatzung auch fiir untere Schranke mdoglich.
— Ubung

Theorem

Bottom-Up-Mergesort hat leicht iiberlineare Laufzeit, d.h.
es gibt Konstanten c,c’, ng > 0, so dass fiir alle n > ng gilt
cnlogy, n < T(n) < c’nlog, n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2022 11/ 16

A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Leicht tberlineare Laufzeit

Leicht iiberlineare Laufzeit nlog, n:
— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?
» Annahme: ¢ = 1, eine Operation dauert im Schnitt 10~8 Sek.

» Bei 1 Tsd. Elementen warten wir
1078 - 10% log,(10%) ~ 0.0001 Sekunden.

Bei 10 Tsd. Elementen ~ 0.0013 Sekunden
Bei 100 Tsd. Elementen = 0.017 Sekunden
Bei 1 Mio. Elementen = 0.2 Sekunden
Bei 1 Mrd. Elementen = 299 Sekunden

vV v v Y

Laufzeit nlog, n nicht viel schlechter als lineare Laufzeit

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2022 12 /

16

A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Mergesort mit Kostenmodell |

Schliisselvergleiche

» Werden nur in merge durchgefiihrt.

> Mergen zweier Teilfolgen der Lange m und n bendtigt
bestenfalls min(n, m) und schlimmstenfalls n+ m — 1
Vergleiche.

> Bei zwei etwa gleich langen Teilfolgen sind das linear viele
Vergleiche, d.h. es gibt ¢, ¢’ > 0, so dass Anzahl Vergleiche
zwischen cn und ¢’n liegt.

— Anzahl der zum Sortieren einer Sequenz notwendigen
Schliisselvergleiche ist leicht tiberlinear in der Lange der
Sequenz (analog zu Laufzeitanalyse).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2022 13 /16

A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Mergesort mit Kostenmodell |l

Elementbewegungen
» Werden nur in merge durchgefiihrt.
> 2n Bewegungen fiir Sequenz der Lange n.

» Insgesamt fiir Mergesort leicht liberlinear
(analog zu Schliisselvergleichen)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16. Marz 2022 14 / 16

A7. Laufzeitanalyse: Bottom-Up-Mergesort Zusammenfassung

A7.2 Zusammenfassung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 16. Marz 2022 15 / 16

A7. Laufzeitanalyse: Bottom-Up-Mergesort

Zusammenfassung

> Mergesort hat leicht iiberlineare Laufzeit,

Schliisselvergleiche und Elementbewegungen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Zusammenfassung

16. Marz 2022

16 / 16

	Laufzeitanalyse Bottom-Up-Mergesort
	

	Zusammenfassung
	

