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Merge-Schritt

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

Wir analysieren Laufzeit für m := hi− lo + 1

c1

c2

c3
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Merge-Schritt: Analyse

T (m) = c1 + c2m + c3m

≥ (c2 + c3)m

Für m ≥ 1:

T (m) = c1 + c2m + c3m

≤ c1m + c2m + c3m

= (c1 + c2 + c3)m

Theorem
Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
c , c ′, n0 > 0, so dass für alle n ≥ n0: cn ≤ T (n) ≤ c ′n.
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Bottom-Up-Mergesort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo = 0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)

10 merge(array, tmp, lo, mid, hi)

11 lo += 2 * length

12 length *= 2

Wir verwenden für die Abschätzung:
c1 Zeilen 2–4
c2 Zeilen 6 und 12
c3 Zeilen 8,9,11

Annahme: merge benötigt
Annahme: c4(hi-lo+1) Operationen.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 7 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Bottom-Up-Mergesort: Analyse I

Annahme: n = 2k für ein k ∈ N>0

Iterationen der äusseren Schleife (m für hi-lo+1):

I Iteration 1: n/2 mal innere Schleife mit Merge für m = 2
c2 + n/2(c3 + 2c4) = c2 + 0.5c3n + c4n

I Iteration 2: n/4 mal innere Schleife mit Merge für m = 4
c2 + n/4(c3 + 4c4) = c2 + 0.25c3n + c4n

I . . .

I Äussere Schleife endet nach letzter Iteration `.

I Iteration `: 1 mal innere Schleife mit Merge für m = n
c2 + n/n(c3 + nc4) = c2 + c3 + c4n

Insgesamt T (n) ≤ c1 + `(c2 + c3n + c4n) ≤ `(c1 + c2 + c3 + c4)n
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Bottom-Up-Mergesort: Analyse II

Wie gross ist `?

I In Iteration i ist für den Merge-Schritt m = 2i

I In Iteration ` hat Merge-Schritt m = 2` = n

I Da n = 2k ist ` = k = log2 n.

Mit c := c1 + c2 + c3 + c4 erhalten wir T (n) ≤ cn log2 n.
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Bottom-Up-Mergesort: Analyse III

Was, wenn n keine Zweierpotenz, also 2k−1 < n < 2k?

I Trotzdem k Iterationen der äusseren Schleife.

I Innere Schleife verwendet nicht mehr Operationen.

I T (n) ≤ cnk = cn(blog2 nc+ 1) ≤ 2cn log2 n (für k > 2)
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Bottom-Up-Mergesort: Analyse IV

Ähnliche Abschätzung auch für untere Schranke möglich.
→ Übung

Theorem
Bottom-Up-Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0 gilt
cn log2 n ≤ T (n) ≤ c ′n log2 n.
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Leicht überlineare Laufzeit

Leicht überlineare Laufzeit n log2 n:
→ doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?

I Annahme: c = 1, eine Operation dauert im Schnitt 10−8 Sek.

I Bei 1 Tsd. Elementen warten wir
10−8 · 103 log2(103) ≈ 0.0001 Sekunden.

I Bei 10 Tsd. Elementen ≈ 0.0013 Sekunden

I Bei 100 Tsd. Elementen ≈ 0.017 Sekunden

I Bei 1 Mio. Elementen ≈ 0.2 Sekunden

I Bei 1 Mrd. Elementen ≈ 299 Sekunden

Laufzeit n log2 n nicht viel schlechter als lineare Laufzeit
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Mergesort mit Kostenmodell I

Schlüsselvergleiche

I Werden nur in merge durchgeführt.

I Mergen zweier Teilfolgen der Länge m und n benötigt
bestenfalls min(n,m) und schlimmstenfalls n +m − 1
Vergleiche.

I Bei zwei etwa gleich langen Teilfolgen sind das linear viele
Vergleiche, d.h. es gibt c, c ′ > 0, so dass Anzahl Vergleiche
zwischen cn und c ′n liegt.

→ Anzahl der zum Sortieren einer Sequenz notwendigen
Schlüsselvergleiche ist leicht überlinear in der Länge der
Sequenz (analog zu Laufzeitanalyse).
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Mergesort mit Kostenmodell II

Elementbewegungen

I Werden nur in merge durchgeführt.

I 2n Bewegungen für Sequenz der Länge n.

I Insgesamt für Mergesort leicht überlinear
(analog zu Schlüsselvergleichen)
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Zusammenfassung

I Mergesort hat leicht überlineare Laufzeit,
Schlüsselvergleiche und Elementbewegungen.
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