
Algorithmen und Datenstrukturen
A7. Laufzeitanalyse: Bottom-Up-Mergesort

Marcel Lüthi and Gabriele Röger

Universität Basel

16. März 2022

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 1 / 16



Algorithmen und Datenstrukturen
16. März 2022 — A7. Laufzeitanalyse: Bottom-Up-Mergesort

A7.1 Laufzeitanalyse Bottom-Up-Mergesort

A7.2 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 2 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

A7.1 Laufzeitanalyse
Bottom-Up-Mergesort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 3 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Inhalt dieser Veranstaltung

A&D

Sortieren

Komplexitäts-
analyse

Fundamentale
Datenstrukturen

Suchen

Graphen

Strings

Weiterführende
Themen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 4 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Merge-Schritt

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

Wir analysieren Laufzeit für m := hi− lo + 1

c1

c2

c3

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 5 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Merge-Schritt: Analyse

T (m) = c1 + c2m + c3m

≥ (c2 + c3)m

Für m ≥ 1:

T (m) = c1 + c2m + c3m

≤ c1m + c2m + c3m

= (c1 + c2 + c3)m

Theorem
Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
c , c ′, n0 > 0, so dass für alle n ≥ n0: cn ≤ T (n) ≤ c ′n.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 6 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Bottom-Up-Mergesort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo = 0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)

10 merge(array, tmp, lo, mid, hi)

11 lo += 2 * length

12 length *= 2

Wir verwenden für die Abschätzung:
c1 Zeilen 2–4
c2 Zeilen 6 und 12
c3 Zeilen 8,9,11

Annahme: merge benötigt
Annahme: c4(hi-lo+1) Operationen.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 7 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Bottom-Up-Mergesort: Analyse I

Annahme: n = 2k für ein k ∈ N>0

Iterationen der äusseren Schleife (m für hi-lo+1):

I Iteration 1: n/2 mal innere Schleife mit Merge für m = 2
c2 + n/2(c3 + 2c4) = c2 + 0.5c3n + c4n

I Iteration 2: n/4 mal innere Schleife mit Merge für m = 4
c2 + n/4(c3 + 4c4) = c2 + 0.25c3n + c4n

I . . .

I Äussere Schleife endet nach letzter Iteration `.

I Iteration `: 1 mal innere Schleife mit Merge für m = n
c2 + n/n(c3 + nc4) = c2 + c3 + c4n

Insgesamt T (n) ≤ c1 + `(c2 + c3n + c4n) ≤ `(c1 + c2 + c3 + c4)n

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 8 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Bottom-Up-Mergesort: Analyse II

Wie gross ist `?

I In Iteration i ist für den Merge-Schritt m = 2i

I In Iteration ` hat Merge-Schritt m = 2` = n

I Da n = 2k ist ` = k = log2 n.

Mit c := c1 + c2 + c3 + c4 erhalten wir T (n) ≤ cn log2 n.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 9 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Bottom-Up-Mergesort: Analyse III

Was, wenn n keine Zweierpotenz, also 2k−1 < n < 2k?

I Trotzdem k Iterationen der äusseren Schleife.

I Innere Schleife verwendet nicht mehr Operationen.

I T (n) ≤ cnk = cn(blog2 nc+ 1) ≤ 2cn log2 n (für k > 2)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 10 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Bottom-Up-Mergesort: Analyse IV

Ähnliche Abschätzung auch für untere Schranke möglich.
→ Übung

Theorem
Bottom-Up-Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0 gilt
cn log2 n ≤ T (n) ≤ c ′n log2 n.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 11 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Leicht überlineare Laufzeit

Leicht überlineare Laufzeit n log2 n:
→ doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?

I Annahme: c = 1, eine Operation dauert im Schnitt 10−8 Sek.

I Bei 1 Tsd. Elementen warten wir
10−8 · 103 log2(103) ≈ 0.0001 Sekunden.

I Bei 10 Tsd. Elementen ≈ 0.0013 Sekunden

I Bei 100 Tsd. Elementen ≈ 0.017 Sekunden

I Bei 1 Mio. Elementen ≈ 0.2 Sekunden

I Bei 1 Mrd. Elementen ≈ 299 Sekunden

Laufzeit n log2 n nicht viel schlechter als lineare Laufzeit

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 12 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Mergesort mit Kostenmodell I

Schlüsselvergleiche

I Werden nur in merge durchgeführt.

I Mergen zweier Teilfolgen der Länge m und n benötigt
bestenfalls min(n,m) und schlimmstenfalls n +m − 1
Vergleiche.

I Bei zwei etwa gleich langen Teilfolgen sind das linear viele
Vergleiche, d.h. es gibt c, c ′ > 0, so dass Anzahl Vergleiche
zwischen cn und c ′n liegt.

→ Anzahl der zum Sortieren einer Sequenz notwendigen
Schlüsselvergleiche ist leicht überlinear in der Länge der
Sequenz (analog zu Laufzeitanalyse).

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 13 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Mergesort mit Kostenmodell II

Elementbewegungen

I Werden nur in merge durchgeführt.

I 2n Bewegungen für Sequenz der Länge n.

I Insgesamt für Mergesort leicht überlinear
(analog zu Schlüsselvergleichen)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 14 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Zusammenfassung

A7.2 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 15 / 16



A7. Laufzeitanalyse: Bottom-Up-Mergesort Zusammenfassung

Zusammenfassung

I Mergesort hat leicht überlineare Laufzeit,
Schlüsselvergleiche und Elementbewegungen.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16. März 2022 16 / 16


	Laufzeitanalyse Bottom-Up-Mergesort
	

	Zusammenfassung
	


