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Merge-Schritt
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def merge(array, tmp, lo, mid, hi):
i=1lo
j = mid + 1
for k in range(lo, hi + 1): # k = lo,...,ht
if j > hi or (i <= mid and array[i] <= array[jl):
tmp[k] = arrayl[i]

i+=1
else:

tmp [k] = arrayl[j]

j+=1

for k in range(lo, hi + 1): # k = lo,...,ht
array[k] = tmp[k]

Wir analysieren Laufzeit fiir m :=hi—lo+1
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Merge-Schritt: Analyse

T(m) =cC +cm-+c3m

> (2 +c)m
Fir m> 1:

T(m) =cCc+com+c3m
<cm+cm+4 cam
=(a+c+a)m

Theorem

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
¢,c’,ng >0, so dass fiir alle n > ng: cn < T(n) < c’n.
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Bottom-Up-Mergesort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge (array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

Wir verwenden fiir die Abschatzung:
c1  Zeilen 2—4 Annahme: merge bendtigt

co  Zeilen 6 und 12 ca(hi-lo+1) Operationen.
c3 Zeilen 8,9,11
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Bottom-Up-Mergesort: Analyse |

Annahme: n = 2 fiir ein k € N5

Iterationen der dusseren Schleife (m fiir hi-lo+1):
» lteration 1: n/2 mal innere Schleife mit Merge fiir m = 2
2+ n/2(c3 4+ 2cs) = ca + 0.5¢c3n + can
» lteration 2: n/4 mal innere Schleife mit Merge fiir m = 4
¢+ n/4(c3 + 4cy) = o + 0.25¢c3n + can

Aussere Schleife endet nach letzter Iteration /.

v

> |teration ¢: 1 mal innere Schleife mit Merge fiir m = n
e+ n/n(cs+ ncy) =+ c3+ can

Insgesamt T(n) < ¢+ ¥(co + csn+ can) < l(c1 + o + 3+ ca)n
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Laufzeitanalyse Bottom-Up-Mergesort

A7. Laufzeitanalyse: Bottom-Up-Mergesort

Bottom-Up-Mergesort: Analyse |l

Wie gross ist £7
» In Iteration i ist fiir den Merge-Schritt m = 2/

> In lteration ¢ hat Merge-Schritt m =2¢ =n
» Dan=2Kist { = k = log, n.

Mit ¢ := ¢1 + ¢ + ¢3 + ¢4 erhalten wir T(n) < cnlog, n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

16. Marz 2022

9/



A7. Laufzeitanalyse: Bottom-Up-Mergesort Laufzeitanalyse Bottom-Up-Mergesort

Bottom-Up-Mergesort: Analyse Il

Was, wenn n keine Zweierpotenz, also 2k=1 < n < 2k?
» Trotzdem k Iterationen der dusseren Schleife.
» Innere Schleife verwendet nicht mehr Operationen.
» T(n) < cnk = cn(|logy n] +1) < 2cnlog, n (fiirr k > 2)
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Bottom-Up-Mergesort: Analyse |V

Ahn__liche Abschatzung auch fiir untere Schranke mdoglich.
— Ubung

Theorem

Bottom-Up-Mergesort hat leicht iiberlineare Laufzeit, d.h.
es gibt Konstanten c,c’, ng > 0, so dass fiir alle n > ng gilt
cnlogy, n < T(n) < c’nlog, n.
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Leicht tberlineare Laufzeit

Leicht iiberlineare Laufzeit nlog, n:
— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?
» Annahme: ¢ = 1, eine Operation dauert im Schnitt 10~8 Sek.

» Bei 1 Tsd. Elementen warten wir
1078 - 10% log,(10%) ~ 0.0001 Sekunden.

Bei 10 Tsd. Elementen ~ 0.0013 Sekunden
Bei 100 Tsd. Elementen = 0.017 Sekunden
Bei 1 Mio. Elementen = 0.2 Sekunden
Bei 1 Mrd. Elementen = 299 Sekunden

vV v v Y

Laufzeit nlog, n nicht viel schlechter als lineare Laufzeit
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Mergesort mit Kostenmodell |

Schliisselvergleiche

» Werden nur in merge durchgefiihrt.

> Mergen zweier Teilfolgen der Lange m und n bendtigt
bestenfalls min(n, m) und schlimmstenfalls n+ m — 1
Vergleiche.

> Bei zwei etwa gleich langen Teilfolgen sind das linear viele
Vergleiche, d.h. es gibt ¢, ¢’ > 0, so dass Anzahl Vergleiche
zwischen cn und ¢’n liegt.

— Anzahl der zum Sortieren einer Sequenz notwendigen
Schliisselvergleiche ist leicht tiberlinear in der Lange der
Sequenz (analog zu Laufzeitanalyse).
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Mergesort mit Kostenmodell |l

Elementbewegungen
» Werden nur in merge durchgefiihrt.
> 2n Bewegungen fiir Sequenz der Lange n.

» Insgesamt fiir Mergesort leicht liberlinear
(analog zu Schliisselvergleichen)
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A7.2 Zusammenfassung
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Zusammenfassung

> Mergesort hat leicht iiberlineare Laufzeit,

Schliisselvergleiche und Elementbewegungen.
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