Algorithmen und Datenstrukturen

A3. Sortieren |: Selection- und Insertionsort

Marcel Liithi and Gabriele Roger

Universitat Basel

24. Februar 2022

Sortieralgorithmen

®000000

Sortieralgorithmen

Sortieralgorithmen
0@00000

Inhalt dieser Veranstaltung

-_ Vergleichsbasierte
... Verfahren
| Komplexitats-
analyse Nicht
[Fundamentale — verg\l;alcpshba&erte
_ Datenstrukturen ertahren
—{ Suchen ‘ || Uberblick und
Ausblick
—{ Graphen ‘

—{ Strings ‘

Sortieralgorithmen
foTe] YeleleYe)

Relevanz

Sortieren von Daten wichtig fiir viele Anwendungen, z.B.
m sortierte Darstellung (z.B. auf Webseite)

m Produkte sortiert nach Preis, Kundenbewertung, etc.
m Kontobewegungen sortiert nach Buchungsdatum

m Vorverarbeitung fiir viele effiziente Suchalgorithmen
m Wie schnell kdnnen Sie eine Nummer im Telefonbuch
nachschlagen? Und wenn die Eintrage nicht sortiert waren?
m Vorverarbeitung fiir viele andere Verfahren

m z.B. Kruskals Algorithmus zur Berechnung minimaler
Spannbdume von ungerichteten Graphen

Fachzeitschrift ,, Computing in Science & Engineering"
nennt Quicksort-Sortieralgorithmus als einen der
10 wichtigsten Algorithmen des 20. Jahrhunderts.

Sortieralgorithmen S ! Zusammenfas:

[e]e]e] le]ele)

Aufgabenstellung

Aufgabenstellung Sortieralgorithmen

Eingabe

m Sequenz von n Elementen ey, ..., e,
m Jedes Element e; hat Schliissel k; = key(e;)

m Ordnungsrelation < auf den Schliisseln
reflexiv: k < k
transitiv: k < k" und k' < k" = k < k"
antisymmetrisch: k < k' und k' < k= k=K
Resultat

m Sequenz der Eingabeelemente gemass
Ordungsrelation ihrer Schliissel sortiert

Notation: auch e < €’ fiir key(e) < key(e')

Sortieralgorithmen

Insertionsort Zusammenfassung
0000800 o

Aufgabenstellung: Beispiele

Beispiel

Eingabe: (3,6,2,3,1), key(e) = e, < auf natiirlichen Zahlen
Ausgabe: (1,2,3,3,6)

Beispiel

Eingabe: Liste aller Studierenden der Uni Basel,
key(e) = (Wohnort von e), lexikographische Ordnung
Ausgabe: Liste aller Studierenden, nach Wohnort sortiert

Bis auf weiteres: ganze Zahlen, key(e) = e und , kleiner gleich*
Spater (und Ubung): Umgang mit komplexen Objekten

Sortieralgorithmen
000000

Zusammenfassung

Interessante Eigenschaften von Sortieralgorithmen

m Zeitbedarf: Wieviele Schliisselvergleiche und
Element-Vertauschungen werden durchgefiihrt?
adaptiv: Verfahren ist schneller, wenn Eingabe bereits
(teilweise) vorsortiert ist.

Sortieralgorithmen
000000

Interessante Eigenschaften von Sortieralgorithmen

m Zeitbedarf: Wieviele Schliisselvergleiche und
Element-Vertauschungen werden durchgefiihrt?
adaptiv: Verfahren ist schneller, wenn Eingabe bereits
(teilweise) vorsortiert ist.

m Platzbedarf: Wieviel Speicherplatz wird zusitzlich zum
Eingabearray verwendet (explizit oder im call stack)?
in-place: Zusatzlich verbrauchter Platz ist konstant
(nicht abhangig von der Eingabegrosse).

Zusammenfassung

Sortieralgorithmen
000000

Interessante Eigenschaften von Sortieralgorithmen

m Zeitbedarf: Wieviele Schliisselvergleiche und
Element-Vertauschungen werden durchgefiihrt?
adaptiv: Verfahren ist schneller, wenn Eingabe bereits
(teilweise) vorsortiert ist.

m Platzbedarf: Wieviel Speicherplatz wird zusitzlich zum
Eingabearray verwendet (explizit oder im call stack)?
in-place: Zusatzlich verbrauchter Platz ist konstant
(nicht abhingig von der Eingabegrosse).

m stabil: Reihenfolge von Elementen mit gleichem Schliissel
wird nicht verandert.

Zusammenfassung

Sortieralgorithmen

Interessante Eigenschaften von Sortieralgorithmen

Zeitbedarf: Wieviele Schliisselvergleiche und
Element-Vertauschungen werden durchgefiihrt?
adaptiv: Verfahren ist schneller, wenn Eingabe bereits
(teilweise) vorsortiert ist.

Platzbedarf: Wieviel Speicherplatz wird zusadtzlich zum
Eingabearray verwendet (explizit oder im call stack)?
in-place: Zusatzlich verbrauchter Platz ist konstant
(nicht abhingig von der Eingabegrosse).

stabil: Reihenfolge von Elementen mit gleichem Schliissel
wird nicht verandert.

vergleichsbasiert: Verfahren verwendet nur Vergleich von
Schliisselpaaren und Tausch zweier Elemente.

Zusammenfassung

Sortieralgorithmen
000000@

Inhalt dieser Veranstaltung

Komplexitats-

analyse Nicht
| Fundamentale] Verg$lcrshb35|erte
_ Datenstrukturen erfanren
—| Suchen | L Uberblick und
Ausblick

—‘ Graphen |
—| Strings |

Selectionsort
©0000000

Selectionsort

Selectionsort
0®000000

Sortierverfahren

—| Insertionsort |
—{ Mergesort |

Nicht —
vergleichsbasierte Minimale
Verfahren Vergleichszahl

—| Quick Sort |

- —{ Heap Sort |
Uberblick und
Ausblick

Selectionsort Zusammenfas:

[e]e] lele]elele)

Selectionsort: Informell

LTI LT]n=8
01 2 3 4 5 6 7
m Finde kleinstes Element an Positionen 0,...,n—1
und tausche es an Position 0
m Finde kleinstes Element an Positionen 1,...,n—1
und tausche es an Position 1
m .
m Finde kleinstes Element an Positionen n —2,...,n—1

und tausche es an Position n - 2

Selectionsort
000@0000

Selectionsort: Algorithmus

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # ¢ =0, ..., n-2

4 # find index of minimum element at positions %, ..., n-1
5 min_index = i

6 for j in range(i + 1, n): # j = 4+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position % with minimum element

10 array[i], array[min_index] = array[min_index], arrayl[i]

Selectionsort
00008000

Selectionsort: Beispiel

i minind. [0 1 2 3 4 5 6 7
372971 4 5
0 5 37297 1 45

Selectionsort
00008000

Selectionsort: Beispiel

i minind. [0 1 2 3 4 5 6 7

372971 4 5
0 5 37297 1 45
1 2 7297 3 45

Selectionsort
00008000

Selectionsort: Beispiel

i minind. [0 1 2 3 4 5 6 7

372971 4 5
0 5 37297 1 45
1 2 7297 3 45
2 5 797 3 45

|gorithmen Selectionsort se sor Zusammenfassung

[e]e]e]e] elele)

Selectionsort: Beispiel

i minind. |0 1 2 3 4 5 6 7
) 37 3 O T LA 5 Minimum wird in
1 g 3 ; 5 g ; :1), 2 2/ dunklen Eintragen
ht.
2 5 797 3 4 5 &€
3 6 9 7 7 4 5
4 7 7 7 9 5 . .
5 5 7 9 7™\ Roter Eintrag ist
6 7 9 7 gefundenes Minimum.

N

Graue Eintrage sind in richtiger Reihenfolge.

Selectionsort
00000800

Selectionsort: Korrektheit

m Invariante: Eigenschaft, die wahrend der gesamten
Algorithmenlaufzeit gilt.

Selectionsort Zusammenfas:

[e]e]e]e]e] lele)

Selectionsort: Korrektheit

m Invariante: Eigenschaft, die wahrend der gesamten
Algorithmenlaufzeit gilt.

m Invariante 1: Zum Ende jedes Durchlaufs der dusseren Schleife
sind die Elemente an den Positionen < j sortiert.

Selectionsort Zusammenfas:

[e]e]e]e]e] lele)

Selectionsort: Korrektheit

m Invariante: Eigenschaft, die wihrend der gesamten
Algorithmenlaufzeit gilt.

m Invariante 1: Zum Ende jedes Durchlaufs der dusseren Schleife
sind die Elemente an den Positionen < i sortiert.

m Invariante 2: Zum Ende jedes Durchlaufs der dusseren Schleife
ist keines der Elemente an den Positionen </ grosser als ein
Element an einer Position > i.

ithmen Selectionsort Zusammenfassung

[e]e]e]e]e] lele)

Selectionsort: Korrektheit

m Invariante: Eigenschaft, die wihrend der gesamten
Algorithmenlaufzeit gilt.

m Invariante 1: Zum Ende jedes Durchlaufs der dusseren Schleife
sind die Elemente an den Positionen < i sortiert.

m Invariante 2: Zum Ende jedes Durchlaufs der dusseren Schleife
ist keines der Elemente an den Positionen </ grosser als ein
Element an einer Position > i.

m Korrektheit der Invarianten per (gemeinsamer) Induktion

Selectionsort Zusammenfassung

[e]e]e]e]e] lele)

Selectionsort: Korrektheit

m Invariante: Eigenschaft, die wihrend der gesamten
Algorithmenlaufzeit gilt.

m Invariante 1: Zum Ende jedes Durchlaufs der dusseren Schleife
sind die Elemente an den Positionen < i sortiert.

m Invariante 2: Zum Ende jedes Durchlaufs der dusseren Schleife
ist keines der Elemente an den Positionen </ grosser als ein
Element an einer Position > i.

m Korrektheit der Invarianten per (gemeinsamer) Induktion

m Nach letztem Schleifendurchlauf sind alle Elemente bis auf das
letzte in korrekter Reihenfolge und das letzte ist nicht kleiner

als das vorletzte.
— gesamte Eingabe sortiert

orithmen Selectionsort S Zusammenfassung

[e]e]e]ee]e] Jo)

Selectionsort: Eigenschaften

m in-place: zusitzlicher Speicherbedarf nicht abhingig von
Eingabegrosse

m Zeitbedarf: hdngt nur von Grosse der Eingabe ab
(nicht adaptiv fiir teilsortierte Eingaben)
genauere Analyse: ndchste Woche

m nicht stabil: beim Tausch kann das Element an Position i
hinter ein gleiches Element springen, was spater nicht mehr
“repariert” wird.

orithmen Selectionsort onsort ammenfa

0000000

Jupyter-Notebook

: Jupyter selection_sort [

Fie Edt View Insert Cel Kemel Widgets Help Trusted |Pythona ©

Selection Sort
Hier ist nochmal der Selection-Sort-Algorithmus aus der Vorlesung:

In [1]: def selection _sort(array):
= len(array)
& 4 1) CehRD o e
print(array)
min index = i
for j in range(i + 1, n):
if array[j] <= array[min_index]:
min_index = j
£ AL "Kleinstes Element an Pos
"ist", array[min_index])
i print("Tausche es mit", array[i], "an Pos.”, 1)
12 array[i], array[min_index] = array[min_index], array[i]

5

, i, "-*, len(array) - 1,

Hier ein Beispielaufru:

In [2]: 1 test.array = [7,3,5,9,3]
selection_sort(test_array)
print(test_array)

3,5,7,9

Jupyter-Notebook: selection_sort.ipynb

Insertionsort
©0000000

Insertionsort

Insertionsort
0®000000

Sortierverfahren

—1|_Insertionsort_|
—{ Mergesort |

Nicht —
vergleichsbasierte Minimale
Verfahren Vergleichszahl

—| Quick Sort |

- —{ Heap Sort |
Uberblick und
Ausblick

Insertionsort
00®00000

Insertionsort: Informell

m Ahnlich zum Sortieren von Spielkarten auf der Hand

m Elemente werden nacheinander in bereits sortierten Bereich
am Sequenzanfang einsortiert.

m Grossere Elemente werden entsprechend nach hinten
verschoben.

Insertionsort
00080000

Insertionsort: Beispiel

ijl01 23 45 6 7
372971 4 5
1 7

Insertionsort
00080000

Insertionsort: Beispiel

ilo
3

NN
Ol W
~|
= Ol
| O
~

,_.
SCEENEEN] '

£ o
S0
20
60
28
30
£0

Insertionsort: Beispiel

2 3 4 5 6 7

1

0

4

1

37 2 9 7

D M~

o~ I~

M~ ™ N

4 7 7 9

5 7 7 9

— AN M <TI0

Insertionsort: Beispiel

Insertionsort Zusammenf.

0O00@0000

i 1 2 3 45 6 7

7 2 9 7 1 4 5
1 7
2 3 7 Graue Eintrage
3 9 “~ wurden nicht bewegt.
4 7 9
5 2 3 7 7 9
6 4 7 7 9
7 5 7 7 9

e

Roter Eintrag

wurde einsortiert.

Schwarze Eintrige
wurden um eins
nach rechts verschoben.

Insertionsort
00008000

Insertionsort: Algorithmus

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(l, n): # 4 =1, ..., n - 1

4 # move arrayl[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j =14, ..., 1
7 if array[j] < array[j-1]:

8 # not yet at final position.

9 # swap arraylj] and arraylj-1]

10 array[jl, array[j-1] = array[j-11, arrayl[jl
11 else:

12 break # continue with next

Insertionsort
00000800

Insertionsort: Algorithmus (etwas schneller)

Vorherige Version: meiste Zuweisungen an array[j-1] unnétig.

def insertion_sort(array):
for i in range(l, len(array)):

val = arrayl[i]

j=i

while j > 0 and array[j - 1] > val:
array[j] = array[j - 1]
j-=1

array[j] = val

w0 N e W N

Laufzeitanalyse (spater): kein fundamentaler Unterschied
trotzdem: zu bevorzugen, wenn direkte Zuweisung moglich

Insertionsort Zusammenfassung

00000080

Insertionsort: Korrektheit

m Invariante 1: Zu Beginn jedes Durchlaufs der dusseren Schleife
sind die Elemente an den Positionen < i sortiert.

Insertionsort Zusammenfas:

00000080

Insertionsort: Korrektheit

m Invariante 1: Zu Beginn jedes Durchlaufs der dusseren Schleife
sind die Elemente an den Positionen < i sortiert.

m Invariante 2: Sei val der Wert an Position i vor Beginn der
inneren Schleife. Zu Beginn jedes Durchlaufs der inneren
Schleife sind die Elemente an den Positionen j bis i grosser
oder gleich val.

Insertionsort Zusammenfassung

00000080

Insertionsort: Korrektheit

m Invariante 1: Zu Beginn jedes Durchlaufs der dusseren Schleife
sind die Elemente an den Positionen < i sortiert.

m Invariante 2: Sei val der Wert an Position i vor Beginn der
inneren Schleife. Zu Beginn jedes Durchlaufs der inneren
Schleife sind die Elemente an den Positionen j bis i grosser
oder gleich val.

m Korrektheit der Invarianten per Induktion

Insertionsort Zusammenfassung

00000080

Insertionsort: Korrektheit

m Invariante 1: Zu Beginn jedes Durchlaufs der dusseren Schleife
sind die Elemente an den Positionen < i sortiert.

m Invariante 2: Sei val der Wert an Position i vor Beginn der
inneren Schleife. Zu Beginn jedes Durchlaufs der inneren
Schleife sind die Elemente an den Positionen j bis i grosser
oder gleich val.

m Korrektheit der Invarianten per Induktion

m Die innere Schleife verandert die Reihenfolge der an eine
hohere Position verschobenen Elemente nicht und das nach
unten verschobene Element wird korrekt einsortiert.

m Nach letztem Schleifendurchlauf sind alle Elemente sortiert.

Insertionsort Zusammenfassung

O000000e

Insertionsort: Eigenschaften

m in place: zusitzlicher Speicherbedarf nicht abhingig von
Eingabegrosse
m Zeitbedarf: adaptiv fiir teilsortierte Eingaben
m Bei bereits sortierter Eingabe bricht innere Schleife direkt ab.

m Bei umgekehrt sortierter Eingabe wird jedes Element
schrittweise bis ganz vorne verschoben.

genauere Analyse: ndchste Woche
m stabil: Element wird nur so lange nach vorne verschoben,

solange es mit echt grosserem Element getauscht wird.
— kann nicht Reihenfolge mit gleichem Element tauschen.

Zusammenfassung

orithmen S r Zusammenfassung

oe

Zusammenfassung

m Selectionsort und Insertionsort sind zwei einfache
Sortierverfahren.

m Selectionsort baut die sortierte Sequenz von vorne auf, indem
es sukzessive ein minimales Element aus dem noch
unsortierten Bereich an das Ende des sortierten Bereichs
tauscht.

m Insertionsort betrachtet die Elemente von vorne nach hinten
und sortiert sie in den bereits sortierten Bereich am
Sequenzanfang ein.

	Sortieralgorithmen
	

	Selectionsort
	

	Insertionsort
	

	Zusammenfassung
	

