
Algorithmen und Datenstrukturen
A3. Sortieren I: Selection- und Insertionsort

Marcel Lüthi and Gabriele Röger

Universität Basel

24. Februar 2022



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Sortieralgorithmen



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Inhalt dieser Veranstaltung

A&D

Sortieren Vergleichsbasierte
Verfahren

Nicht
vergleichsbasierte

Verfahren

Überblick und
Ausblick

Komplexitäts-
analyse

Fundamentale
Datenstrukturen

Suchen

Graphen

Strings



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Relevanz

Sortieren von Daten wichtig für viele Anwendungen, z.B.

sortierte Darstellung (z.B. auf Webseite)

Produkte sortiert nach Preis, Kundenbewertung, etc.
Kontobewegungen sortiert nach Buchungsdatum

Vorverarbeitung für viele effiziente Suchalgorithmen

Wie schnell können Sie eine Nummer im Telefonbuch
nachschlagen? Und wenn die Einträge nicht sortiert wären?

Vorverarbeitung für viele andere Verfahren

z.B. Kruskals Algorithmus zur Berechnung minimaler
Spannbäume von ungerichteten Graphen

Fachzeitschrift
”
Computing in Science & Engineering“

nennt Quicksort-Sortieralgorithmus als einen der
10 wichtigsten Algorithmen des 20. Jahrhunderts.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Aufgabenstellung

Aufgabenstellung Sortieralgorithmen

Eingabe

Sequenz von n Elementen e1, . . . , en

Jedes Element ei hat Schlüssel ki = key(ei )

Ordnungsrelation ≤ auf den Schlüsseln
reflexiv: k ≤ k
transitiv: k ≤ k ′ und k ′ ≤ k ′′ ⇒ k ≤ k ′′

antisymmetrisch: k ≤ k ′ und k ′ ≤ k ⇒ k = k ′

Resultat

Sequenz der Eingabeelemente gemäss
Ordungsrelation ihrer Schlüssel sortiert

Notation: auch e ≤ e ′ für key(e) ≤ key(e ′)



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Aufgabenstellung: Beispiele

Beispiel

Eingabe: 〈3, 6, 2, 3, 1〉, key(e) = e, ≤ auf natürlichen Zahlen
Ausgabe: 〈1, 2, 3, 3, 6〉

Beispiel

Eingabe: Liste aller Studierenden der Uni Basel,
Eingabe: key(e) = 〈Wohnort von e〉, lexikographische Ordnung
Ausgabe: Liste aller Studierenden, nach Wohnort sortiert

Bis auf weiteres: ganze Zahlen, key(e) = e und
”
kleiner gleich“

Später (und Übung): Umgang mit komplexen Objekten



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Interessante Eigenschaften von Sortieralgorithmen

Zeitbedarf: Wieviele Schlüsselvergleiche und
Element-Vertauschungen werden durchgeführt?
adaptiv: Verfahren ist schneller, wenn Eingabe bereits
(teilweise) vorsortiert ist.

Platzbedarf: Wieviel Speicherplatz wird zusätzlich zum
Eingabearray verwendet (explizit oder im call stack)?
in-place: Zusätzlich verbrauchter Platz ist konstant
(nicht abhängig von der Eingabegrösse).

stabil: Reihenfolge von Elementen mit gleichem Schlüssel
wird nicht verändert.

vergleichsbasiert: Verfahren verwendet nur Vergleich von
Schlüsselpaaren und Tausch zweier Elemente.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Interessante Eigenschaften von Sortieralgorithmen

Zeitbedarf: Wieviele Schlüsselvergleiche und
Element-Vertauschungen werden durchgeführt?
adaptiv: Verfahren ist schneller, wenn Eingabe bereits
(teilweise) vorsortiert ist.

Platzbedarf: Wieviel Speicherplatz wird zusätzlich zum
Eingabearray verwendet (explizit oder im call stack)?
in-place: Zusätzlich verbrauchter Platz ist konstant
(nicht abhängig von der Eingabegrösse).

stabil: Reihenfolge von Elementen mit gleichem Schlüssel
wird nicht verändert.

vergleichsbasiert: Verfahren verwendet nur Vergleich von
Schlüsselpaaren und Tausch zweier Elemente.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Interessante Eigenschaften von Sortieralgorithmen

Zeitbedarf: Wieviele Schlüsselvergleiche und
Element-Vertauschungen werden durchgeführt?
adaptiv: Verfahren ist schneller, wenn Eingabe bereits
(teilweise) vorsortiert ist.

Platzbedarf: Wieviel Speicherplatz wird zusätzlich zum
Eingabearray verwendet (explizit oder im call stack)?
in-place: Zusätzlich verbrauchter Platz ist konstant
(nicht abhängig von der Eingabegrösse).

stabil: Reihenfolge von Elementen mit gleichem Schlüssel
wird nicht verändert.

vergleichsbasiert: Verfahren verwendet nur Vergleich von
Schlüsselpaaren und Tausch zweier Elemente.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Interessante Eigenschaften von Sortieralgorithmen

Zeitbedarf: Wieviele Schlüsselvergleiche und
Element-Vertauschungen werden durchgeführt?
adaptiv: Verfahren ist schneller, wenn Eingabe bereits
(teilweise) vorsortiert ist.

Platzbedarf: Wieviel Speicherplatz wird zusätzlich zum
Eingabearray verwendet (explizit oder im call stack)?
in-place: Zusätzlich verbrauchter Platz ist konstant
(nicht abhängig von der Eingabegrösse).

stabil: Reihenfolge von Elementen mit gleichem Schlüssel
wird nicht verändert.

vergleichsbasiert: Verfahren verwendet nur Vergleich von
Schlüsselpaaren und Tausch zweier Elemente.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Inhalt dieser Veranstaltung

A&D

Sortieren Vergleichsbasierte
Verfahren

Nicht
vergleichsbasierte

Verfahren

Überblick und
Ausblick

Komplexitäts-
analyse

Fundamentale
Datenstrukturen

Suchen

Graphen

Strings



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Selectionsort



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Selectionsort

Insertionsort

Mergesort

Minimale
Vergleichszahl

Quick Sort

Heap Sort

Nicht
vergleichsbasierte

Verfahren

Überblick und
Ausblick



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Selectionsort: Informell

0 1 2 3 4 5 6 7

n = 8

Finde kleinstes Element an Positionen 0, . . . , n − 1
und tausche es an Position 0

Finde kleinstes Element an Positionen 1, . . . , n − 1
und tausche es an Position 1

. . .

Finde kleinstes Element an Positionen n − 2, . . . , n − 1
und tausche es an Position n - 2



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Selectionsort: Algorithmus

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Selectionsort: Beispiel

i min ind. 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
0 5 3 7 2 9 7 1 4 5

1 2 1 7 2 9 7 3 4 5

2 5 1 2 7 9 7 3 4 5

3 6 1 2 3 9 7 7 4 5
4 7 1 2 3 4 7 7 9 5
5 5 1 2 3 4 5 7 9 7
6 7 1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9

Minimum wird in
dunklen Einträgen
gesucht.

Roter Eintrag ist
gefundenes Minimum.

Graue Einträge sind in richtiger Reihenfolge.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Selectionsort: Beispiel

i min ind. 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
0 5 3 7 2 9 7 1 4 5
1 2 1 7 2 9 7 3 4 5

2 5 1 2 7 9 7 3 4 5

3 6 1 2 3 9 7 7 4 5
4 7 1 2 3 4 7 7 9 5
5 5 1 2 3 4 5 7 9 7
6 7 1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9

Minimum wird in
dunklen Einträgen
gesucht.

Roter Eintrag ist
gefundenes Minimum.

Graue Einträge sind in richtiger Reihenfolge.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Selectionsort: Beispiel

i min ind. 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
0 5 3 7 2 9 7 1 4 5
1 2 1 7 2 9 7 3 4 5
2 5 1 2 7 9 7 3 4 5

3 6 1 2 3 9 7 7 4 5
4 7 1 2 3 4 7 7 9 5
5 5 1 2 3 4 5 7 9 7
6 7 1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9

Minimum wird in
dunklen Einträgen
gesucht.

Roter Eintrag ist
gefundenes Minimum.

Graue Einträge sind in richtiger Reihenfolge.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Selectionsort: Beispiel

i min ind. 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
0 5 3 7 2 9 7 1 4 5
1 2 1 7 2 9 7 3 4 5
2 5 1 2 7 9 7 3 4 5
3 6 1 2 3 9 7 7 4 5
4 7 1 2 3 4 7 7 9 5
5 5 1 2 3 4 5 7 9 7
6 7 1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9

Minimum wird in
dunklen Einträgen
gesucht.

Roter Eintrag ist
gefundenes Minimum.

Graue Einträge sind in richtiger Reihenfolge.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Selectionsort: Korrektheit

Invariante: Eigenschaft, die während der gesamten
Algorithmenlaufzeit gilt.

Invariante 1: Zum Ende jedes Durchlaufs der äusseren Schleife
sind die Elemente an den Positionen ≤ i sortiert.

Invariante 2: Zum Ende jedes Durchlaufs der äusseren Schleife
ist keines der Elemente an den Positionen ≤ i grösser als ein
Element an einer Position > i .

Korrektheit der Invarianten per (gemeinsamer) Induktion

Nach letztem Schleifendurchlauf sind alle Elemente bis auf das
letzte in korrekter Reihenfolge und das letzte ist nicht kleiner
als das vorletzte.
→ gesamte Eingabe sortiert



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Selectionsort: Korrektheit

Invariante: Eigenschaft, die während der gesamten
Algorithmenlaufzeit gilt.

Invariante 1: Zum Ende jedes Durchlaufs der äusseren Schleife
sind die Elemente an den Positionen ≤ i sortiert.

Invariante 2: Zum Ende jedes Durchlaufs der äusseren Schleife
ist keines der Elemente an den Positionen ≤ i grösser als ein
Element an einer Position > i .

Korrektheit der Invarianten per (gemeinsamer) Induktion

Nach letztem Schleifendurchlauf sind alle Elemente bis auf das
letzte in korrekter Reihenfolge und das letzte ist nicht kleiner
als das vorletzte.
→ gesamte Eingabe sortiert



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Selectionsort: Korrektheit

Invariante: Eigenschaft, die während der gesamten
Algorithmenlaufzeit gilt.

Invariante 1: Zum Ende jedes Durchlaufs der äusseren Schleife
sind die Elemente an den Positionen ≤ i sortiert.

Invariante 2: Zum Ende jedes Durchlaufs der äusseren Schleife
ist keines der Elemente an den Positionen ≤ i grösser als ein
Element an einer Position > i .

Korrektheit der Invarianten per (gemeinsamer) Induktion

Nach letztem Schleifendurchlauf sind alle Elemente bis auf das
letzte in korrekter Reihenfolge und das letzte ist nicht kleiner
als das vorletzte.
→ gesamte Eingabe sortiert



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Selectionsort: Korrektheit

Invariante: Eigenschaft, die während der gesamten
Algorithmenlaufzeit gilt.

Invariante 1: Zum Ende jedes Durchlaufs der äusseren Schleife
sind die Elemente an den Positionen ≤ i sortiert.

Invariante 2: Zum Ende jedes Durchlaufs der äusseren Schleife
ist keines der Elemente an den Positionen ≤ i grösser als ein
Element an einer Position > i .

Korrektheit der Invarianten per (gemeinsamer) Induktion

Nach letztem Schleifendurchlauf sind alle Elemente bis auf das
letzte in korrekter Reihenfolge und das letzte ist nicht kleiner
als das vorletzte.
→ gesamte Eingabe sortiert



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Selectionsort: Korrektheit

Invariante: Eigenschaft, die während der gesamten
Algorithmenlaufzeit gilt.

Invariante 1: Zum Ende jedes Durchlaufs der äusseren Schleife
sind die Elemente an den Positionen ≤ i sortiert.

Invariante 2: Zum Ende jedes Durchlaufs der äusseren Schleife
ist keines der Elemente an den Positionen ≤ i grösser als ein
Element an einer Position > i .

Korrektheit der Invarianten per (gemeinsamer) Induktion

Nach letztem Schleifendurchlauf sind alle Elemente bis auf das
letzte in korrekter Reihenfolge und das letzte ist nicht kleiner
als das vorletzte.
→ gesamte Eingabe sortiert



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Selectionsort: Eigenschaften

in-place: zusätzlicher Speicherbedarf nicht abhängig von
Eingabegrösse

Zeitbedarf: hängt nur von Grösse der Eingabe ab
(nicht adaptiv für teilsortierte Eingaben)
genauere Analyse: nächste Woche

nicht stabil: beim Tausch kann das Element an Position i
hinter ein gleiches Element springen, was später nicht mehr
“repariert” wird.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Jupyter-Notebook

Jupyter-Notebook: selection sort.ipynb



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Insertionsort



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Selectionsort

Insertionsort

Mergesort

Minimale
Vergleichszahl

Quick Sort

Heap Sort

Nicht
vergleichsbasierte

Verfahren

Überblick und
Ausblick



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Insertionsort: Informell

Ähnlich zum Sortieren von Spielkarten auf der Hand

Elemente werden nacheinander in bereits sortierten Bereich
am Sequenzanfang einsortiert.

Grössere Elemente werden entsprechend nach hinten
verschoben.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Insertionsort: Beispiel

i 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
1 3 7 2 9 7 1 4 5

2 2 3 7 9 7 1 4 5

3 2 3 7 9 7 1 4 5
4 2 3 7 7 9 1 4 5
5 1 2 3 7 7 9 4 5
6 1 2 3 4 7 7 9 5
7 1 2 3 4 5 7 7 9

Graue Einträge
wurden nicht bewegt.

Roter Eintrag
wurde einsortiert.

Schwarze Einträge
wurden um eins
nach rechts verschoben.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Insertionsort: Beispiel

i 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
1 3 7 2 9 7 1 4 5
2 2 3 7 9 7 1 4 5

3 2 3 7 9 7 1 4 5
4 2 3 7 7 9 1 4 5
5 1 2 3 7 7 9 4 5
6 1 2 3 4 7 7 9 5
7 1 2 3 4 5 7 7 9

Graue Einträge
wurden nicht bewegt.

Roter Eintrag
wurde einsortiert.

Schwarze Einträge
wurden um eins
nach rechts verschoben.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Insertionsort: Beispiel

i 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
1 3 7 2 9 7 1 4 5
2 2 3 7 9 7 1 4 5
3 2 3 7 9 7 1 4 5
4 2 3 7 7 9 1 4 5
5 1 2 3 7 7 9 4 5
6 1 2 3 4 7 7 9 5
7 1 2 3 4 5 7 7 9

Graue Einträge
wurden nicht bewegt.

Roter Eintrag
wurde einsortiert.

Schwarze Einträge
wurden um eins
nach rechts verschoben.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Insertionsort: Beispiel

i 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
1 3 7 2 9 7 1 4 5
2 2 3 7 9 7 1 4 5
3 2 3 7 9 7 1 4 5
4 2 3 7 7 9 1 4 5
5 1 2 3 7 7 9 4 5
6 1 2 3 4 7 7 9 5
7 1 2 3 4 5 7 7 9

Graue Einträge
wurden nicht bewegt.

Roter Eintrag
wurde einsortiert.

Schwarze Einträge
wurden um eins
nach rechts verschoben.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Insertionsort: Algorithmus

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 # not yet at final position.

9 # swap array[j] and array[j-1]

10 array[j], array[j-1] = array[j-1], array[j]

11 else:

12 break # continue with next i



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Insertionsort: Algorithmus (etwas schneller)

Vorherige Version: meiste Zuweisungen an array[j-1] unnötig.

1 def insertion_sort(array):

2 for i in range(1, len(array)):

3 val = array[i]

4 j = i

5 while j > 0 and array[j - 1] > val:

6 array[j] = array[j - 1]

7 j -= 1

8 array[j] = val

Laufzeitanalyse (später): kein fundamentaler Unterschied
trotzdem: zu bevorzugen, wenn direkte Zuweisung möglich



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Insertionsort: Korrektheit

Invariante 1: Zu Beginn jedes Durchlaufs der äusseren Schleife
sind die Elemente an den Positionen < i sortiert.

Invariante 2: Sei val der Wert an Position i vor Beginn der
inneren Schleife. Zu Beginn jedes Durchlaufs der inneren
Schleife sind die Elemente an den Positionen j bis i grösser
oder gleich val.

Korrektheit der Invarianten per Induktion

Die innere Schleife verändert die Reihenfolge der an eine
höhere Position verschobenen Elemente nicht und das nach
unten verschobene Element wird korrekt einsortiert.

Nach letztem Schleifendurchlauf sind alle Elemente sortiert.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Insertionsort: Korrektheit

Invariante 1: Zu Beginn jedes Durchlaufs der äusseren Schleife
sind die Elemente an den Positionen < i sortiert.

Invariante 2: Sei val der Wert an Position i vor Beginn der
inneren Schleife. Zu Beginn jedes Durchlaufs der inneren
Schleife sind die Elemente an den Positionen j bis i grösser
oder gleich val.

Korrektheit der Invarianten per Induktion

Die innere Schleife verändert die Reihenfolge der an eine
höhere Position verschobenen Elemente nicht und das nach
unten verschobene Element wird korrekt einsortiert.

Nach letztem Schleifendurchlauf sind alle Elemente sortiert.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Insertionsort: Korrektheit

Invariante 1: Zu Beginn jedes Durchlaufs der äusseren Schleife
sind die Elemente an den Positionen < i sortiert.

Invariante 2: Sei val der Wert an Position i vor Beginn der
inneren Schleife. Zu Beginn jedes Durchlaufs der inneren
Schleife sind die Elemente an den Positionen j bis i grösser
oder gleich val.

Korrektheit der Invarianten per Induktion

Die innere Schleife verändert die Reihenfolge der an eine
höhere Position verschobenen Elemente nicht und das nach
unten verschobene Element wird korrekt einsortiert.

Nach letztem Schleifendurchlauf sind alle Elemente sortiert.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Insertionsort: Korrektheit

Invariante 1: Zu Beginn jedes Durchlaufs der äusseren Schleife
sind die Elemente an den Positionen < i sortiert.

Invariante 2: Sei val der Wert an Position i vor Beginn der
inneren Schleife. Zu Beginn jedes Durchlaufs der inneren
Schleife sind die Elemente an den Positionen j bis i grösser
oder gleich val.

Korrektheit der Invarianten per Induktion

Die innere Schleife verändert die Reihenfolge der an eine
höhere Position verschobenen Elemente nicht und das nach
unten verschobene Element wird korrekt einsortiert.

Nach letztem Schleifendurchlauf sind alle Elemente sortiert.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Insertionsort: Eigenschaften

in place: zusätzlicher Speicherbedarf nicht abhängig von
Eingabegrösse

Zeitbedarf: adaptiv für teilsortierte Eingaben

Bei bereits sortierter Eingabe bricht innere Schleife direkt ab.
Bei umgekehrt sortierter Eingabe wird jedes Element
schrittweise bis ganz vorne verschoben.

genauere Analyse: nächste Woche

stabil: Element wird nur so lange nach vorne verschoben,
solange es mit echt grösserem Element getauscht wird.
→ kann nicht Reihenfolge mit gleichem Element tauschen.



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Zusammenfassung



Sortieralgorithmen Selectionsort Insertionsort Zusammenfassung

Zusammenfassung

Selectionsort und Insertionsort sind zwei einfache
Sortierverfahren.

Selectionsort baut die sortierte Sequenz von vorne auf, indem
es sukzessive ein minimales Element aus dem noch
unsortierten Bereich an das Ende des sortierten Bereichs
tauscht.

Insertionsort betrachtet die Elemente von vorne nach hinten
und sortiert sie in den bereits sortierten Bereich am
Sequenzanfang ein.


	Sortieralgorithmen
	

	Selectionsort
	

	Insertionsort
	

	Zusammenfassung
	


