Theory of Computer Science D6. Beyond NP

Gabriele Röger

University of Basel

May 17, 2021

Theory of Computer Science May 17, 2021 — D6. Beyond NP

D6.1 coNP

D6.2 Time and Space Complexity

D6.3 Polynomial Hierarchy

D6.4 Counting

Complexity Theory: What we already have seen

- Complexity theory investigates which problems are "easy" to solve and which ones are "hard".
- two important problem classes:
 - P: problems that are solvable in polynomial time by "normal" computation mechanisms
 - ▶ NP: problems that are solvable in polynomial time with the help of nondeterminism
- ightharpoonup We know that $P \subset NP$, but we do not know whether P = NP.
- Many practically relevant problems are NP-complete:
 - They belong to NP.
 - ▶ All problems in NP can be polynomially reduced to them.
- ► If there is an efficient algorithm for one NP-complete problem, then there are efficient algorithms for all problems in NP.

D6.1 coNP

Complexity Class coNP

Definition (coNP)

coNP is the set of all languages L for which $\bar{L} \in NP$.

Example: The complement of SAT is in coNP.

Hardness and Completeness

Definition (Hardness and Completeness)

Let C be a complexity class.

A problem Y is called C-hard if $X \leq_p Y$ for all problems $X \in C$.

Y is called C-complete if $Y \in C$ and Y is C-hard.

Example (TAUTOLOGY)

The following problem **TAUTOLOGY** is coNP-complete:

Given: a propositional logic formula φ

Question: Is φ valid, i.e. is it true under all variable assignments?

Known Results and Open Questions

Open

► $NP \stackrel{?}{=} coNP$

Known

- $ightharpoonup P \subseteq coNP$
- If X is NP-complete then \bar{L} is coNP-complete.
- ▶ If $NP \neq coNP$ then $P \neq NP$.
- ▶ If a coNP-complete problem is in NP, then NP = coNP.
- ▶ If a coNP-complete problem is in P, then P = coNP = NP.

D6.2 Time and Space Complexity

Reminder: Time Complexity Classes

Definition (Time Complexity Classes TIME and NTIME)

Let $t: \mathbb{N} \to \mathbb{R}^+$ be a function.

The time complexity class $\mathsf{TIME}(\mathsf{t}(\mathsf{n}))$ is the collection of all languages that are decidable by an O(t) time Turing machine, and $\mathsf{NTIME}(\mathsf{t}(\mathsf{n}))$ is the collection of all languages that are decidable by an O(t) time nondeterministic Turing machine.

- ▶ $\mathsf{TIME}(f)$: all languages accepted by a DTM in time f.
- ▶ NTIME(f): all languages accepted by a NTM in time f.
- $ightharpoonup P = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k)$
- ightharpoonup NP = $\bigcup_{k\in\mathbb{N}}$ NTIME (n^k)

Space

- ▶ Analogously: A TM decides a language L in space f if the computation on every input visits at most f(|w|) tape cells besides it input on the tape.
- \triangleright SPACE(f): all languages decided by a DTM in space f.
- NSPACE(f): all languages decided by a NTM in space f.

Important Complexity Classes Beyond NP

- ► PSPACE = $\bigcup_{k \in \mathbb{N}} SPACE(n^k)$
- ► NPSPACE = $\bigcup_{k \in \mathbb{N}} \mathsf{NSPACE}(n^k)$
- ightharpoonup EXPTIME = $\bigcup_{k \in \mathbb{N}} \mathsf{TIME}(2^{n^k})$
- ► EXPSPACE = $\bigcup_{k \in \mathbb{N}} SPACE(2^{n^k})$

Some known results:

- PSPACE = NPSPACE (from Savitch's theorem)
- ► PSPACE ⊆ EXPTIME ⊆ EXPSPACE (at least one relationship strict)
- P ≠ EXPTIME, PSPACE ≠ EXPSPACE
- ightharpoonup P \subset NP \subset PSPACE

D6.3 Polynomial Hierarchy

Oracle Machines

An oracle machine is like a Turing machine that has access to an oracle which can solve some decision problem in constant time.

Example oracle classes:

- $ightharpoonup P^{NP} = \{L \mid L \text{ can get decided in polynomial time by a DTM}$ with an oracle that decides some problem in NP $\}$
- ► $NP^{NP} = \{L \mid L \text{ can get decided in pol. time by a NTM}$ with an oracle deciding some problem in $NP\}$

Polynomial Hierarchy

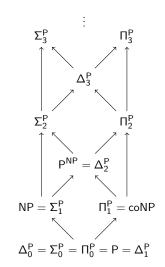
Inductively defined:

$$ightharpoonup \Delta_0^P := \Sigma_0^P := \Pi_0^P := P$$

$$\blacktriangleright \ \Delta_{i+1}^P := P^{\Sigma_i^P}$$

$$\triangleright \Sigma_{i+1}^{\mathsf{P}} := \mathsf{NP}^{\Sigma_i^{\mathsf{P}}}$$

$$ightharpoonup$$
 PH := $\bigcup_k \Sigma_k^P$



Polynomial Hierarchy: Results

- ▶ PH \subseteq PSPACE (PH $\stackrel{?}{=}$ PSPACE is open)
- ► There are complete problems for each level.
- ▶ If there is a PH-complete problem, then the polynomial hierarchy collapses to some finite level.
- ▶ If P = NP, the polynomial hierarchy collapses to the first level.

D6. Beyond NP Counting

D6.4 Counting

D6. Beyond NP Counting

Complexity class #P

Set of functions $f: \{0,1\}^* \to \mathbb{N}_0$, where f(n) is the number of accepting paths of a polynomial-time NTM

Example (#SAT)

The following problem #SAT is #P-complete:

Given: a propositional logic formula φ

Question: Under how many variable assignments is φ true?

D6. Beyond NP The End

What's Next?

contents of this course:

- A. background ✓
 - ▶ mathematical foundations and proof techniques
- B. automata theory and formal languages √b What is a computation?
- C. Turing computability √b What can be computed at all?
- D. complexity theory

 Next can be computed efficiently.
 - ▶ What can be computed efficiently?
- E. more computability theory▷ Other models of computability