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CLIQUE

Graph Problems

Definition (CLIQUE)
The problem CLIQUE is defined as follows:
Given: undirected graph G = (V. E), number K € Ny

Question: Does G have a clique of size at least K,
i.e., a set of vertices C C V with |C| > K
and {u,v} € E for all u,v € C with u # v?

German: Clique
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Cliques: Exercise (slido)

How many nodes has the largest clique of this graph?
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CLIQUE is NP-Complete (1)

Graph Problems

Theorem (CLIQUE is NP-Complete)
CLIQUE is NP-complete.
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CLIQUE is NP-Complete (2)

Proof.
CLIQUE € NP: guess and check.

CLIQUE is NP-hard: We show 3SAT <, CLIQUE.

» We are given a 3-CNF formula ¢, and we may assume
that each clause has exactly three literals.

» In polynomial time, we must construct
a graph G = (V, E) and a number K such that:
G has a clique of size at least K iff ¢ is satisfiable.

~ construction of V., E, K on the following slides.
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CLIQUE is NP-Complete (3)

Proof (continued).
Let m be the number of clauses in .
Let ¢;; the j-th literal in clause /.
Define V, E, K as follows:
> V={{))|1<i<m1l<j<3}
~> a vertex for every literal of every clause
» E contains edge between (i, j) and (/’,j’) if and only if

» j# i ~ belong to different clauses, and
» (¢ and {jsj» are not complementary literals

> K = m
~> obviously polynomially computable

to show: reduction property
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CLIQUE is NP-Complete (4)

Proof (continued).
(=): If ¢ is satisfiable, then (V/, E) has clique of size at least K:

» Given a satisfying variable assignment choose a vertex
corresponding to a satisfied literal in each clause.

» The chosen K vertices are all connected with each other
and hence form a clique of size K.

Gabriele Roger (University of Basel) Theory of Computer Science May 18, 2020 10 / 40

D4. Some NP-Complete Problems, Part | Graph Problems

CLIQUE is NP-Complete (5)

Proof (continued).
(<): If (V, E) has a clique of size at least K, then ¢ is satisfiable:
» Consider a given clique C of size at least K.

» The vertices in C must all correspond to different clauses
(vertices in the same clause are not connected by edges).

~ exactly one vertex per clause is included in C
» Two vertices in C never correspond to complementary literals

X and =X (due to the way we defined the edges).
> If a vertex corresp. to X was chosen, map X to T (true).
> If a vertex corresp. to =X was chosen, map X to F (false).
» If neither was chosen, arbitrarily map X to T or F.
~ satisfying assignment

Ol
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INDSET

Definition (INDSET)
The problem INDSET is defined as follows:

Given: undirected graph G = (V. E), number K € Ny

Question: Does G have an independent set of size at least K,
i.e., a set of vertices | C V with |/| > K
and {u,v} ¢ E for all u,v € | with u # v?

German: unabhangige Menge
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Independent Set: Exercise (slido)
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INDSET is NP-Complete (1)

Theorem (INDSET is NP-Complete)
INDSET is NP-complete.

Proof.
INDSET € NP: guess and check.
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Does this graph have an independent set of size 37 ga
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INDSET is NP-Complete (2)
Proof (continued).
INDSET is NP-hard: We show CLIQUE <, INDSET.
We describe a polynomial reduction f.
Let (G, K) with G = (V/, E) be the given input for CLIQUE.
Then f({G,K)) is the INDSET instance (G, K), where
G:=(V,E)and E:={{u,v} CV]|u#v,{u v} ¢E}
(This graph G is called the complement graph of G.)
Clearly f can be computed in polynomial time.
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INDSET is NP-Complete (3)

Proof (continued).
We have:

((V,E),K) € CLIQUE
iff there exists a set V/ C V with |V/| > K
and {u,v} € E for all u,v € V' with u # v
iff there exists a set V' C V with |V'| > K
and {u,v} ¢ E for all u,v € V' with u# v
iff ((V,E),K) € INDSET
iff  f(((V,E),K)) € INDSET

D4. Some NP-Complete Problems, Part | Graph Problems

INDSET <, VERTEXCOVER

and hence f is a reduction. O
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VERTEXCOVER

Definition (VERTEXCOVER)

The problem VERTEXCOVER is defined as follows:

Given: undirected graph G = (V, E), number K € Ny

Question: Does G have a vertex cover of size at most K,

i.e., a set of vertices C C V with [C| < K and {u,v}NC #0

for all {u,v} € E?

German: Knoteniiberdeckung
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Vertex Cover: Exercise (slido)

Does this graph have a vertex cover of size 47
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VERTEXCOVER is NP-Complete (1)

Theorem (VERTEXCOVER is NP-Complete)
VERTEXCOVER is NP-complete.
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VERTEXCOVER is NP-Complete (2)

Proof.
VERTEXCOVER € NP: guess and check.

VERTEXCOVER is NP-hard:
We show INDSET <, VERTEXCOVER.

We describe a polynomial reduction f.
Let (G, K) with G =
Then f((G,K)) := (G, |V]|—

This can clearly be computed in polynomial time.
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VERTEXCOVER is NP-Complete (3)

Proof (continued).

Graph Problems

For vertex set V/ C V/, we write V/ for its complement Vi V.

Observation: a set of vertices is a vertex cover
iff its complement is an independent set.

We thus have:

((V,E),K) € INDSET
iff  (V,E) has an independent set / with |/| > K
iff (V,E) has a vertex cover C with [C| > K
iff  (V, E) has a vertex cover C with |C| < |V]|—
iff ((V,E),|V|— K) € VERTEXCOVER
iff f(((V,E),K)) € VERTEXCOVER

and hence f is a reduction.
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D4.2 Routing Problems
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3SAT <, DIRHAMILTONCYCLE
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DIRHAMILTONCYCLE is NP-Complete (1)

Definition (Reminder: DIRHAMILTONCYCLE)
The problem DIRHAMILTONCYCLE is defined as follows:

Given: directed graph G = (V, E)

Question: Does G contain a Hamilton cycle?

Theorem
DIRHAMILTONCYCLE is NP-complete.
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DIRHAMILTONCYCLE is NP-Complete (2)

Proof.
DirHAMILTONCYCLE € NP: guess and check.

DIRHAMILTONCYCLE is NP-hard:
We show 3SAT <, DIRHAMILTONCYCLE.

> We are given a 3-CNF formula ¢ where each clause contains
exactly three literals and no clause contains duplicated literals.
> We must, in polynomial time, construct
a directed graph G = (V, E) such that:
G contains a Hamilton cycle iff ¢ is satisfiable.

» construction of (V, E) on the following slides
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DIRHAMILTONCYCLE is NP-Complete (3)

Proof (continued).
> Let Xi,...,X, be the atomic propositions in .

» Let ci,...,cm be the clauses of ¢ with ¢; = (i1 V £ia V {j3).

» Construct a graph with 6m + n vertices
(described on the following slides).
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DIRHAMILTONCYCLE is NP-Complete (4)

Proof (continued).
» For every variable X;, add vertex x;
with 2 incoming and 2 outgoing edges:

» For every clause ¢;, add the subgraph C; with 6 vertices:
aq ai

S

P> We describe later how to connect these parts.
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DIRHAMILTONCYCLE is NP-Complete (5)

Proof (continued).
Let m be a Hamilton cycle of the total graph.

» Whenever 7 enters subgraph C; from one of its “entrances”,
it must leave via the corresponding “exit":
(a— A b— B, c— Q).
Otherwise, m cannot be a Hamilton cycle.
» Hamilton cycles can behave in the following ways
with regard to Cj:
» m passes through C; once (from any entrance)

> m passes through C; twice (from any two entrances)
» m passes through C; three times (once from every entrance)
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DIRHAMILTONCYCLE is NP-Complete (6)

Proof (continued).
Connect the “open ends” in the graph as follows:

» ldentify entrances/exits of the clause subgraph C;
with the three literals in clause ¢;.

» One exit of x; is positive, the other one is negative.

P For the positive exit, determine the clauses
in which the positive literal X; occurs:

» Connect the positive exit of x; with the X;-entrance
of the first such clause graph.

» Connect the Xj-exit of this clause graph with the X;-entrance
of the second such clause graph, and so on.

» Connect the Xj-exit of the last such clause graph
with the positive entrance of x;1 (or x1 if i = n).

> analogously for the negative exit of x; and the literal = .X;
May 18, 2020
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DIRHAMILTONCYCLE is NP-Complete (7)

Proof (continued).
The construction is polynomial and is a reduction:
(=): construct a Hamilton cycle from a satisfying assignment
> Given a satisfying assignment Z, construct a Hamilton cycle

that leaves x; through the positive exit if Z(X;) is true
and by the negative exit if Z(X;) is false.

» Afterwards, we visit all Cj-subgraphs for clauses
that are satisfied by this literal.

» In total, we visit each Cj-subgraph 1-3 times.
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DIRHAMILTONCYCLE is NP-Complete (8)

Proof (continued).
(«<=): construct a satisfying assignment from a Hamilton cycle
» A Hamilton cycle visits every vertex x;
and leaves it by the positive or negative exit.
> Map X; to true or false depending on which exit
is used to leave x;.

» Because the cycle must traverse each C;-subgraph
at least once (otherwise it is not a Hamilton cycle),
this results in a satisfying assignment. (Details omitted.)
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DIRHAMILTONCYCLE <, HAMILTONCYCLE
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HAMILTONCYCLE is NP-Complete (1)

Definition (Reminder: HAMILTONCYCLE)
The problem HAMILTONCYCLE is defined as follows:

Given: undirected graph G = (V, E)
Question: Does G contain a Hamilton cycle?

Theorem
HAMILTONCYCLE is NP-complete.
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HAMILTONCYCLE is NP-Complete (2)

Proof sketch.
HamiotoNCycLE € NP: guess and check.

HAMILTONCYCLE is NP-hard: We show
DIRHAMILTONCYCLE <, HAMILTONCYCLE.

Basic building block of the reduction:

L = X—OCx
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HAMILTONCYCLE <, TSP
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TSP is NP-Complete (1)

Definition (Reminder: TSP)
TSP (traveling salesperson problem) is the following
decision problem:
> Given: finite set S # () of cities, symmetric cost function
cost: S xS — Ny, cost bound K € Ny
» Question: Is there a tour with total cost at most K, i.e.,
a permutation (si,...,sp) of the cities with
S L cost(s;, siv1) + cost(sy, 1) < K?

German: Problem der/des Handlungsreisenden

Theorem
TSP is NP-complete.

SAT
3SAT
/ \
CLIQUE DIRHAMILTONCYCLE ~ SUBSETSUM
| |
INDSET HaMIiLTONCYCLE PARTITION
| |
VERTEXCOVER TSP BINPACKING
Gabriele Réger (University of Basel) Theory of Computer Science May 18, 2020 37 / 40
D4. Some NP-Complete Problems, Part | Routing Problems

TSP is NP-Complete (2)

Proof.
TSP € NP: guess and check.

TSP is NP-hard: We showed HAMILTONCYCLE <, TSP
in Chapter D2. O
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Summary

» In this chapter we showed NP-completeness of
P three classical graph problems:
CLIQUE, INDSET, VERTEXCOVER
» three classical routing problems:
DrHAMILTONCYCLE, HAMILTONCYCLE, TSP
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