Theory of Computer Science
D3. Proving NP-Completeness

Gabriele Roger
University of Basel

May 10, 2021

Overview
0000000000

Overview

Overview
0®00000000

Reminder: P and NP

P: class of languages that are decidable in polynomial time
by a deterministic Turing machine

NP: class of languages that are decidable in polynomial time

by a non-deterministic Turing machine

Overview ropositional Logic k ore Summar
00@0000000 C

Reminder: Polynomial Reductions

Definition (Polynomial Reduction)

Let AC Y* and B C I'* be decision problems.
We say that A can be polynomially reduced to B,
written A <, B, if there is a function f : ¥* — " such that:
m f can be computed in polynomial time by a DTM
m f reduces Ato B
mie, forallweX*: weAiff f(w) e B

f is called a polynomial reduction from A to B

Transitivity of <,: If A<, Band B <, C, then A <, C.

Overview
[e]e]e] lelelelele]e]

Reminder: NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)

Let B be a decision problem.
B is called NP-hard if A <, B for all problems A € NP.
B is called NP-complete if B € NP and B is NP-hard.

Overview
0000®00000

Proving NP-Completeness by Reduction

m Suppose we know one NP-complete problem

(we will use satisfiability of propositional logic formulas).

m With its help, we can then prove quite easily
that further problems are NP-complete.

Summar

Overview
0000®00000

Proving NP- Completeness by Reduction

m Suppose we know one NP-complete problem
(we will use satisfiability of propositional logic formulas).

m With its help, we can then prove quite easily
that further problems are NP-complete.

Theorem (Proving NP-Completeness by Reduction)
Let A and B be problems such that:
m A js NP-hard, and
m A<, B.
Then B is also NP-hard.
If furthermore B € NP, then B is NP-complete.

Overview
[e]e]e]ele] lelele]e]

Proving NP-Completeness by Reduction: Proof

First part: We must show X <, B for all X € NP.

Overview ona c ok-Levin Theorem

[e]e]e]e]e] le]elele)

Proving NP- Completeness by Reduction: Proof

Proof
First part: We must show X <, B for all X € NP.

From X <, A (because A is NP-hard) and A <, B
(by prerequisite), this follows due to the transitivity of <.

Overview ona c ok-Levin Theorem

[e]e]e]e]e] le]elele)

Proving NP- Completeness by Reduction: Proof

First part: We must show X <, B for all X € NP.

From X <, A (because A is NP-hard) and A <, B
(by prerequisite), this follows due to the transitivity of <.

Second part: follows directly by definition of NP-completeness. [l

Overview

[e]e]e]e]o]e] lolele)

NP- Complete Problems

m There are thousands of known NP-complete problems.

m An extensive catalog of NP-complete problems
from many areas of computer science is contained in:

Michael R. Garey and David S. Johnson:
Computers and Intractability —

A Guide to the Theory of NP-Completeness
W. H. Freeman, 1979.

m In the remaining chapters, we get to know
some of these problems.

Overview
0000000800

_—
J

Overview of the Reductions

SAT

3SAT

e

CLIQUE DIRHAMILTONCYCLE SUBSETSUM

J

INDSET HaMILTONCYCLE PARTITION

J

VERTEXCOVER

TSP

J

BINPACKING

Summar

Overview

0000000080

What Do We Have to Do7

m We want to show the NP-completeness of these 11 problems.

m We first show that SAT is NP-complete.
m Then it is sufficient to show
m that polynomial reductions exist for all edges in the figure
(and thus all problems are NP-hard)
m and that the problems are all in NP.
(It would be sufficient to show membership in NP only for
the leaves in the figure. But membership is so easy to show
that this would not save any work.)

Overview
000000000 e

Questions

o

~

Questions?

Propositional Logic
©000000000

Propositional Logic

Propositional Logic
0®00000000

m We need to establish NP-completeness of one problem
“from scratch”.

m We will use satisfiability of propositional logic formulas.
m So what is this?

Let's briefly cover the basics.

Propositional Logic
00®0000000

Propositional Logic: Syntax

m Let A be a set of atomic propositions
— variables that can be true or false

Propositional Logic
00®0000000

Propositional Logic: Syntax

m Let A be a set of atomic propositions
— variables that can be true or false

m Every a € A is a propositional formula over A.

Propositional Logic
00®0000000

Propositional Logic: Syntax

m Let A be a set of atomic propositions
— variables that can be true or false

m Every a € A is a propositional formula over A.

m If ¢ is a propositional formula over A,
then so is its negation —p.

Propositional Logic

0O0e0000000

Propositional Logic: Syntax

m Let A be a set of atomic propositions
— variables that can be true or false

m Every a € A is a propositional formula over A.

m If ¢ is a propositional formula over A,
then so is its negation —p.

m If p1,...,p, are propositional formulas over A,
then so is the conjunction (@1 A -+ A ¢p).

Propositional Logic

0O0e0000000

Propositional Logic: Syntax

m Let A be a set of atomic propositions
— variables that can be true or false

Every a € A is a propositional formula over A.

If ¢ is a propositional formula over A,

then so is its negation —p.

If ©1,...,@n are propositional formulas over A,
then so is the conjunction (@1 A -+ A ¢p).

If ©1,...,@n are propositional formulas over A,
then so is the disjunction (@1 V -+ V ¢p).

Propositional Logic

0O0e0000000

Propositional Logic: Syntax

m Let A be a set of atomic propositions
— variables that can be true or false

m Every a € A is a propositional formula over A.

m If ¢ is a propositional formula over A,
then so is its negation —p.

m If p1,...,p, are propositional formulas over A,
then so is the conjunction (1 A -+ A pp).

m If p1,..., @, are propositional formulas over A,
then so is the disjunction (¢1 V-V ¢p).

(XA (Y V—=(ZAY)))is a propositional formula over {X, Y, Z}.

Propositional Logic o 3 Summar

0O00@000000

Propositional Logic: Semantics

m A truth assignment for a set of atomic propositions A is a
function Z: A — {T,F}.
m A formula can be true or false under a given truth assignment.
Write Z |= ¢ to express that ¢ is true under Z.
m Atomic variable a is true under Z iff Z(a) = T.
m Negation -y is true under Z iff ¢ is not:
TE-@iff @
m Conjunction (g1 A -+ A pp) is true under Z iff each ¢; is:
ITE(@1 ANy iff T = forallie{l,..., n}
m Disjunction (@1 V -+ V ¢,) is true under Z iff some ¢; is:
ZTE(p1V- Ve, iffexists i € {1,...,n} such that Z |= ¢;

Propositional Logic
0000@00000

Propositional Logic: Example

Consider truth assignment Z = {X — F, Y +— T.Z — F}.
Is (X A (Y V—=(ZAY))) true under Z?

Propositional Logic
0000080000

Propositional Logic: Exercise (slido)

Consider truth assignment

I={X—F,Y—T,Z— F}.

Is (X V (=Z AY)) true under Z?

Propositional Logic
0000008000

More Propositional Logic

m (¢ — 1)) is a short-hand notation for formula (—¢ V 1).

Propositional Logic
000000000

More Propositional Logic

m (¢ — 1)) is a short-hand notation for formula (—¢ V 1).
m (¢ —) is true under variable assignment Z if

Propositional Logic
000000000

More Propositional Logic

m (¢ — 1)) is a short-hand notation for formula (—¢ V 1).
m (¢ —) is true under variable assignment Z if
B ¢ is not true under Z, or

Propositional Logic o 3 Summar

0O00000e000

More Propositional Logic

m (¢ — 1)) is a short-hand notation for formula (—¢ V 1).
m (¢ —) is true under variable assignment Z if

B ¢ is not true under Z, or
m 1 is true under Z.

Propositional Logic o 3 Summar

0O00000e000

More Propositional Logic

m (¢ — 1)) is a short-hand notation for formula (—¢ V 1).
m (¢ —) is true under variable assignment Z if
B ¢ is not true under Z, or
m 7 is true under Z.
m If (¢ —) and ¢ are true under 7
then also 1 must be true under Z.

Propositional Logic
0000008000

Summar

More Propositional Logic

m (¢ — 1)) is a short-hand notation for formula (—¢ V 1).

m (¢ —) is true under variable assignment Z if

B ¢ is not true under Z, or
m 1 is true under Z.

m If (¢ —) and ¢ are true under 7
then also 1 must be true under Z.

m (¢ < 1)) is a short-hand notation for formula

((p =) A (Y = 9))

Propositional Logic X ore 3SA Summary

0O00000e000

More Propositional Logic

m (¢ — 1)) is a short-hand notation for formula (—¢ V 1).
m (¢ —) is true under variable assignment Z if

B ¢ is not true under Z, or
m 1 is true under Z.

m If (¢ —) and ¢ are true under 7
then also 1 must be true under Z.

m (¢ < 1)) is a short-hand notation for formula

((p =) A (Y = 9))

m (¢ <> 1) is true under variable assignment Z if

Propositional Logic Co \ 3S Summary

0O00000e000

More Propositional Logic

m (¢ — 1)) is a short-hand notation for formula (—¢ V 1).
m (p —) is true under variable assignment Z if
B ¢ is not true under Z, or
m 7 is true under Z.
m If (¢ — %) and ¢ are true under 7
then also 1 must be true under Z.

m (¢ < 1)) is a short-hand notation for formula
((p =)N (W =)
m (¢ <> 1) is true under variable assignment Z if
m both, ¢ and 1 are true under Z, or

Propositional Logic Co \ 3S Summary

0O00000e000

More Propositional Logic

m (¢ — 1)) is a short-hand notation for formula (—¢ V 1).
m (p —) is true under variable assignment Z if
B ¢ is not true under Z, or
m 7 is true under Z.
m If (¢ — %) and ¢ are true under 7
then also 1 must be true under Z.

m (¢ < 1)) is a short-hand notation for formula
((p =)N (W =)
m (¢ <> 1) is true under variable assignment Z if

m both, ¢ and 1 are true under Z, or
® neither ¢ nor ¢ is true under 7.

Propositional Logic
0000000800 000000000000000 0000000000

Short Notations for Conjunctions and Disjunctions

Short notation for addition:

> X=x1+x 4+ + X
XE{X1 .. sXn }

Analogously (possible because of commutativity of A and V):

(/\%X@) = (1 A2 A+ Apn)
(V_o#) = (aveav Vi)

for X ={p1,...,¢n}

Ovel Propositional Logic k-Le ore Summar
5 9 0000000080 @ 00

SAT Problem

Definition (SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula ¢

Question: Is ¢ satisfiable,
i.e. is there a variable assignment Z such that Z |= ¢?

Propositional Logic
0000000000

Questions

o

~

Questions?

Cook-Levin Theorem

900000000000000

Cook-Levin Theorem

Proy ona c Cook-Levin Theorem

00000000C [e]e]e oJele] 0O@0000000000000 0000000000

SAT is NP-complete

Definition (SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula ¢

Question: Is ¢ satisfiable?

Cook-Levin Theorem 3SA Summar

0O@0000000000000

AT is NP-complete

Definition (SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula ¢

Question: Is ¢ satisfiable?

Theorem (Cook, 1971; Levin, 1973)

SAT is NP-complete.

| Logic Cook-Levin Theorem 3SA Summary
0®0000000000000 0000000000

SAT is NP-complete

Definition (SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula ¢
Question: Is ¢ satisfiable?

Theorem (Cook, 1971; Levin, 1973)
SAT is NP-complete.

SAT € NP: guess and check.
SAT is NP-hard: somewhat more complicated (to be continued)

| Logic Cook-Levin Theorem 3SA Summar

AT (1)

P-hardness of S

Proof (continued).
We must show: A <, SAT for all A€ NP.

E ona c Cook-Levin Theorem
000) 00®000000000000 0000000000

NP-hardness of SAT (1)

Proof (continued).
We must show: A <, SAT for all A€ NP.
Let A be an arbitrary problem in NP.

We have to find a polynomial reduction of A to SAT,
i.e., a function f computable in polynomial time
such that for every input word w over the alphabet of A:

w € A iff f(w) is a satisfiable propositional formula.

ogic Cook-Levin Theorem & Summar

NP-hardness of SAT (2)

Proof (continued).

Because A € NP, there is an NTM M and a polynomial p
such that M decides the problem A in time p.

Idea: construct a formula that encodes the possible configurations
which M can reach in time p(|w|) on input w

and that is satisfiable if and only if

an accepting configuration can be reached in this time.

Cook-Levin Theorem

Summary

O0000@0000000000

NP-hardness of SAT (3)

Proof (continued).

Let M =(Q,%,T,0, qo, Gaccept; qreject> be an NTM for A,
and let p be a polynomial bounding the computation time of M.

Without loss of generality, p(n) > n for all n.

Let w = wy...w, € X* be the input for M.

Propositional Logic Cook-Levin Theorem 3 . Summary

NP-hardness of SAT (3)

000080000000000

Proof (continued).

Let M =(Q,X,T,0, qo, Gaccept, Greject) be an NTM for A,

and let p be a polynomial bounding the computation time of M.
Without loss of generality, p(n) > n for all n.

Let w = wy...w, € X* be the input for M.

We number the tape positions with natural numbers such that the
TM head initially is on position 1.

Propositional Logic Cook-Levin Theorem 3 : Summary

NP-hardness of SAT (3)

000080000000000

Proof (continued).

Let M =(Q,X,T,0, qo, Gaccept, Greject) be an NTM for A,
and let p be a polynomial bounding the computation time of M.
Without loss of generality, p(n) > n for all n.

Let w = wy...w, € X* be the input for M.

We number the tape positions with natural numbers such that the
TM head initially is on position 1.

Observation: within p(n) computation steps the TM head
can only reach positions in the set Pos= {1,...,p(n) + 1}.

Propositional Logic Cook-Levin Theorem 3 : Summary

NP-hardness of SAT (3)

Proof (continued).

Let M =(Q,X,T,0, qo, Gaccept, Greject) be an NTM for A,
and let p be a polynomial bounding the computation time of M.
Without loss of generality, p(n) > n for all n.

Let w = wy...w, € X* be the input for M.

We number the tape positions with natural numbers such that the
TM head initially is on position 1.

Observation: within p(n) computation steps the TM head
can only reach positions in the set Pos= {1,...,p(n) + 1}.

Instead of infinitely many tape positions, we now only
need to consider these (polynomially many!) positions.

ogic Cook-Levin Theorem

NP-hardness of SAT (4)

Proof (continued).

We can encode configurations of M by specifying:
m what the current state of M is
m on which position in Pos the TM head is located
m which symbols from I the tape contains at positions Pos

~» can be encoded by propositional variables

Cook-Levin Theorem
00000®000000000

NP-hardness of SAT (4)

Proof (continued).

We can encode configurations of M by specifying:

m what the current state of M is

m on which position in Pos the TM head is located

m which symbols from I the tape contains at positions Pos
~» can be encoded by propositional variables

To encode a full computation (rather than just one configuration),
we need copies of these variables for each computation step.

Cook-Levin Theorem
00000®000000000

NP-hardness of SAT (4)

Proof (continued).

We can encode configurations of M by specifying:

m what the current state of M is

m on which position in Pos the TM head is located

m which symbols from I the tape contains at positions Pos
~» can be encoded by propositional variables

To encode a full computation (rather than just one configuration),
we need copies of these variables for each computation step.

We only need to consider the computation steps
Steps = {0,1,...,p(n)} because M should accept
within p(n) steps.

gic Cook-Levin Theorem

NP-hardness of SAT (5)

Proof (continued).

Use the following propositional variables in formula f(w):
m state;, (t € Steps, g € Q)
~> encodes the state of the NTM in the t-th configuration
m head,; (t € Steps, i € Pos)
~» encodes the head position in the t-th configuration

m tape,; , (t € Steps, i € Pos, a€T)
~~ encodes the tape content in the t-th configuration

Construct f(w) such that every satisfying interpretation
m describes a sequence of NTM configurations
m that begins with the start configuration,
B reaches an accepting configuration
m and follows the NTM rules in §

E ona c Cook-Levin Theorem

NP-hardness of SAT (6)

Proof (continued).

Auxiliary formula:

oneofX:z(\/x)/\—' V V ry)

xeX xe€X yeX\{x}

Auxiliary notation:

The symbol L stands for an arbitrary unsatisfiable formula
(e.g., (AN —A), where A is an arbitrary proposition).

Overvi Propositional Logic Cook-Levin Theorem Summar

NP-hardness of SAT (7)

Proof (continued).

1. describe the configurations of the TM:

Valid := /\ (oneof {state;q | g € Q} A
teSteps

oneof {head; ;| i € Pos} A

/\ oneof {tape, ; , | a € F})

i€Pos

Cook-Levin Theorem
000000000 e00000

NP-hardness of SAT (8)

Proof (continued).

2. begin in the start configuration

n
Init := stateg 4, /\ headg 1 A /\ tapeg j w, N /\ tapeg i
i=1 i€Pos\{1,...,n}

Cook-Levin Theorem
0000000000 e0000

NP-hardness of SAT (9)

Proof (continued).

3. reach an accepting configuration

Accept := \/ statet,g,ccept
teSteps

Cook-Levin Theorem
0000000000 0e000

NP-hardness of SAT (10)

Proof (continued).

4. follow the rules in §:

Trans := /\ <5tatef,qaccept V statet g e V \/ RuleLR)
teSteps Re6

where. . .

Cook-Levin Theorem
000000000000800

NP-hardness of SAT (11)

Proof (continued).

4. follow the rules in § (continued):

Rulet ((q,a),(q,2',0)) =
statey q /\ stater iy o /\

/\ (heady; — (tape,; , A headyi1,i1p A tape,y 1)) A

i€Pos
/\ /\ ((ﬁheadtJ A tapety,-yau) — tapetH’,-’au)
i€Pos a'’ el

m For i+ D, interpret i + R~ i+ 1, i + L ~» max{1,i — 1}.

m special case: tape and head variables with a tape index i + D
outside of Pos are replaced by L; likewise all variables
with a time index outside of Steps.

Ove Pre sitional Logic Cook-Levin Theorem Summar

NP-hardness of SAT (12)

Proof (continued).

Putting the pieces together:
Set f(w) := Valid A Init A Accept A Trans.

| Logic Cook-Levin Theorem 3SA Summary

NP-hardness of SAT (12)

Proof (continued).

Putting the pieces together:
Set f(w) := Valid A Init A Accept A Trans.

m f(w) can be constructed in time polynomial in |w].

m w e Aiff M accepts w in p(|w|) steps
iff f(w) is satisfiable
iff f(w) € SAT

~ A <p SAT

Cook-Levin Theorem 3SA Summary
0000000000000e0 0000000000

NP-hardness of SAT (12)

Proof (continued).

Putting the pieces together:
Set f(w) := Valid A Init A Accept A Trans.

m f(w) can be constructed in time polynomial in |w].

m w e Aiff M accepts w in p(|w|) steps
iff f(w) is satisfiable
iff f(w) € SAT

~ A <p SAT
Since A € NP was arbitrary, this is true for every A € NP.

| Logic Cook-Levin Theorem 3S Summary

NP-hardness of SAT (12)

Proof (continued).

Putting the pieces together:

Set f(w) := Valid A Init A Accept A Trans.
m f(w) can be constructed in time polynomial in |w].

m w e Aiff M accepts w in p(|w|) steps
iff f(w) is satisfiable
iff f(w) € SAT
~ A <p SAT
Since A € NP was arbitrary, this is true for every A € NP.
Hence SAT is NP-hard and thus also NP-complete. Ol

Cook-Levin Theorem
000000000000 00e

Questions

o

~

Questions?

3SAT

3SAT

O@00000000

More Propositional Logic: Conjunctive Normal Form

m A literal is an atomic proposition X or its negation —X.

3SAT

O@00000000

More Propositional Logic: Conjunctive Normal Form

m A literal is an atomic proposition X or its negation —X.

m A clause is a disjunction of literals,
eg. (XV-YVvZ)

3SAT

O@00000000

More Propositional Logic: Conjunctive Normal Form

m A literal is an atomic proposition X or its negation —X.
m A clause is a disjunction of literals,
eg. (XV-YVvZ)

m A formula in conjunctive normal form
is a conjunction of clauses,
eg (XVaYVZ)AN(=XVZ)AN(XVY))

Cook-Levin Theorem 3SAT Summar
000000000000000 [e]e] IeleleYelelele] 00

Exercise (slido)

Which of the following formulas are in conjunctive
normal form?

B (XAYAZ)V (=X NAN-Z))
B (XVaYVZ)

B (X V-Z)A=(XVY))

B (Y VX)A(YVZ))

/

SAT

3SAT

3SAT
[eleTe] YoloToleTele]

e

CLIQUE DIRHAMILTONCYCLE SUBSETSUM

J

J

INDSET HaMILTONCYCLE PARTITION

J

VERTEXCOVER

TSP

J

BINPACKING

Summar

Prc Sition: ogic k \ ore 3SAT Summary

SAT and 3SAT

Definition (Reminder: SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula ¢

Question: Is ¢ satisfiable?

Definition (3SAT)

The problem 3SAT is defined as follows:

Given: a propositional logic formula ¢ in conjunctive normal form
with at most three literals per clause

Question: Is ¢ satisfiable?

3SAT

O0000e0000

3SAT is NP-Complete (1)

Theorem (3SAT is NP-Complete)

3SAT is NP-complete.

3SAT Summary

O00000e000

3SAT € NP: guess and check.

3SAT is NP-hard: We show SAT <, 3SAT.

m Let ¢ be the given input for SAT. Let Sub(y) denote
the set of subformulas of ¢, including ¢ itself.

3SAT Summary
000000000000 000 0000008000 [e]e)

3SAT is NP-Complete (2)

3SAT € NP: guess and check.

3SAT is NP-hard: We show SAT <, 3SAT.

m Let ¢ be the given input for SAT. Let Sub(y) denote
the set of subformulas of ¢, including ¢ itself.

m For all 1) € Sub(y), we introduce a new proposition Xj.

3SAT Summary
0000008000 [e]e)

3SAT is NP-Complete (2)

3SAT € NP: guess and check.

3SAT is NP-hard: We show SAT <, 3SAT.

m Let ¢ be the given input for SAT. Let Sub(y) denote
the set of subformulas of ¢, including ¢ itself.

m For all 1) € Sub(y), we introduce a new proposition Xj.

m For each new proposition Xy, define the following
auxiliary formula y.:

m If ¢ = A for an atom A: xy = (X, <> A)

If Qb = —|’¢Jll Xy = (XU <~ ﬁXw/)

If o = (' AY"): Xy = (Xy & (Xyr A X))
If = (@' V') xg = Xy & (Xyr vV Xy))

3SAT is NP-Complete (3)

Proof (continued).
m Consider the conjunction of all these auxiliary formulas,
Xall = /\1[1€5ub(4,0) Xp-

Propositional Logic Cook Theorem 3SAT Summary

3SAT is NP-Complete (3)

m Consider the conjunction of all these auxiliary formulas,
Xall = Ad)ESUb(Lp) Xp-

m Every variable assignment Z for the original variables
can be extended to a variable assignment 7’

under which g, is true in exactly one way:
for each ¢ € Sub(p), set Z'(Xy) = T iff T |= 1.

I’VJDL sitional LuL,l Cook Theorem 3SAT Summary

0000000800

SSAT is NP- Complete (3)

Proof (continued).

m Consider the conjunction of all these auxiliary formulas,
Xall ‘= Ad)ESUb(Lp) X

m Every variable assignment Z for the original variables
can be extended to a variable assignment 7’
under which g, is true in exactly one way:
for each ¢ € Sub(p), set Z'(Xy) = T iff T |= 1.

m It follows that ¢ is satisfiable iff (xai A X,) is satisfiable.

I’VJDL sitional LuL,l Cook Theorem 3SAT Summary

0000000800

SSAT is NP- Complete (3)

m Consider the conjunction of all these auxiliary formulas,
Xall = Ad)ESUb(Lp) Xp-

m Every variable assignment Z for the original variables
can be extended to a variable assignment 7’
under which g, is true in exactly one way:
for each ¢ € Sub(p), set Z'(Xy) = T iff T |= 1.

m It follows that ¢ is satisfiable iff (xai A X,) is satisfiable.

m This formula can be computed in linear time.

3SAT

0000000800

3SAT is NP-Complete (3)

Proof (continued).

Consider the conjunction of all these auxiliary formulas,
Xall = Al}JESub(Lp) Xp-

Every variable assignment Z for the original variables
can be extended to a variable assignment 7’

under which g, is true in exactly one way:

for each ¢ € Sub(p), set Z'(Xy) = T iff T |= 1.

It follows that ¢ is satisfiable iff (xai A X,) is satisfiable.
This formula can be computed in linear time.

It can also be converted to 3-CNF in linear time

because it is the conjunction of constant-size parts
involving at most three variables each.

(Each part can be converted to 3-CNF independently.)

3SAT

0000000800

3SAT is NP-Complete (3)

Proof (continued).

m Consider the conjunction of all these auxiliary formulas,
Xall = Al}JESub(Lp) Xp-

m Every variable assignment Z for the original variables
can be extended to a variable assignment 7’
under which g, is true in exactly one way:
for each ¢ € Sub(p), set Z'(Xy) = T iff T |= 1.

m It follows that ¢ is satisfiable iff (xai A X,) is satisfiable.

m This formula can be computed in linear time.

m It can also be converted to 3-CNF in linear time
because it is the conjunction of constant-size parts
involving at most three variables each.

(Each part can be converted to 3-CNF independently.)

m Hence, this describes a polynomial-time reduction.

]

3SAT Summar
0000000080 00

Restricted 3SAT

Note: 3SAT remains NP-complete if we also require that
m every clause contains exactly three literals and

m a clause may not contain the same literal twice

3SAT Summar
0000000080 00

Restricted 3SAT

Note: 3SAT remains NP-complete if we also require that
m every clause contains exactly three literals and
m a clause may not contain the same literal twice

Idea:

m remove duplicated literals from each clause.

Prc sitional Logic k ore 3SAT Summary

Restricted 3SAT

Note: 3SAT remains NP-complete if we also require that
m every clause contains exactly three literals and
m a clause may not contain the same literal twice
Idea:
m remove duplicated literals from each clause.
m add new variables: X, Y, Z

m add new clauses: (XVYVZ), (XVYV-Z),(XV-YVZ),
(=XVYVZ),(XVaYVaZ), (-XVYV-Z),
(=X VYV 2)

3SAT Summary
0000000080 [e]e)

Restricted 3SAT

Note: 3SAT remains NP-complete if we also require that
m every clause contains exactly three literals and
m a clause may not contain the same literal twice
Idea:
m remove duplicated literals from each clause.
m add new variables: X, Y, Z

m add new clauses: (XVYVZ), (XVYV-Z),(XV-YVZ),
(=XVYVZ),(XVaYVaZ), (-XVYV-Z),
(=X Vv-YV2Z)

~ satisfied if and only if X, Y, Z are all true

3SAT Summary
0000000080 [e]e)

Restricted 3SAT

Note: 3SAT remains NP-complete if we also require that
m every clause contains exactly three literals and
m a clause may not contain the same literal twice
Idea:
m remove duplicated literals from each clause.
m add new variables: X, Y, Z
m add new clauses: (XVYVZ), (XVYV-Z),(XV-YVZ),
(=XVYVZ),(XVaYVaZ), (=XVYV-aZ),
(=X V-YVZ)
~ satisfied if and only if X, Y, Z are all true
m fill up clauses with fewer than three literals
with =X and if necessary additionally with =Y

3SAT
0000000008

Questions

o

~

Questions?

[Je]

Summary

Summary

oe

Summary

Thousands of important problems are NP-complete.

The satisfiability problem of propositional logic (SAT)
is NP-complete.

m Proof idea for NP-hardness:

m Every problem in NP can be solved by an NTM
in polynomial time p(|w|) for input w.
m Given a word w, construct a propositional logic formula ¢
that encodes the computation steps of the NTM on input w.
m Construct ¢ so that it is satisfiable if and only if
there is an accepting computation of length p(|w]).

Usually (as seen for 3SAT), the easiest way to show

that another problem is NP-complete is to
m show that it is in NP with a guess-and-check algorithm, and
m polynomially reduce a known NP-complete to it.

	Overview
	

	Propositional Logic
	

	Cook-Levin Theorem
	

	3SAT
	

	Summary
	

