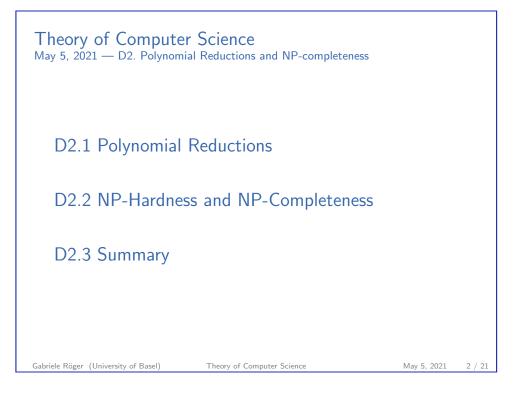
Theory of Computer Science D2. Polynomial Reductions and NP-completeness Gabriele Röger University of Basel May 5, 2021 Gabriele Röger (University of Basel) Theory of Computer Science May 5, 2021 1 / 21

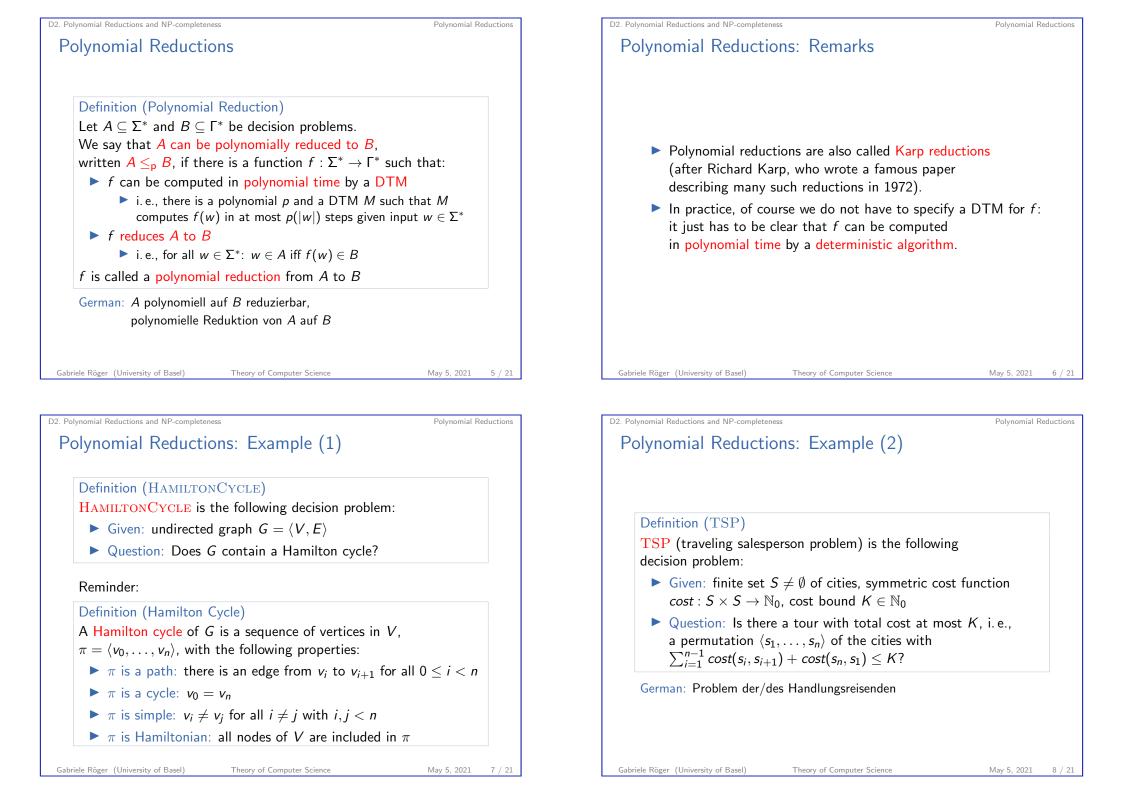
D2. Polynomial Reductions and NP-completeness

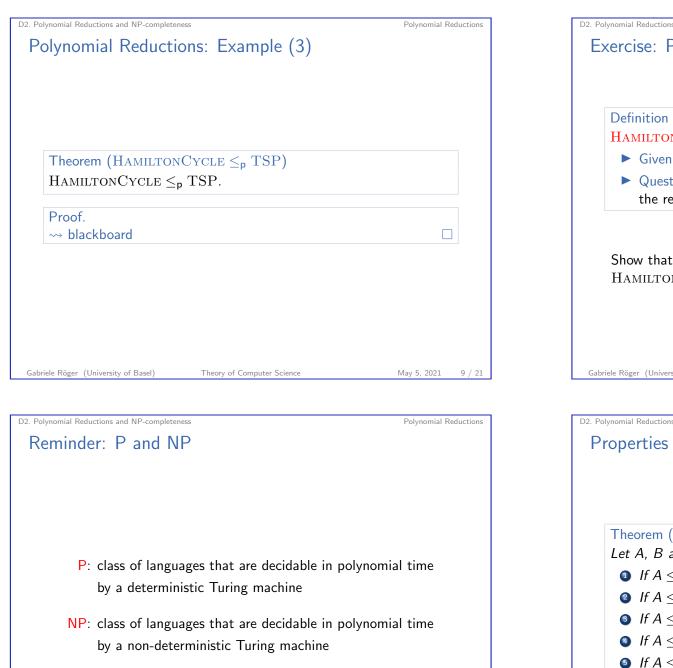
Polynomial Reductions

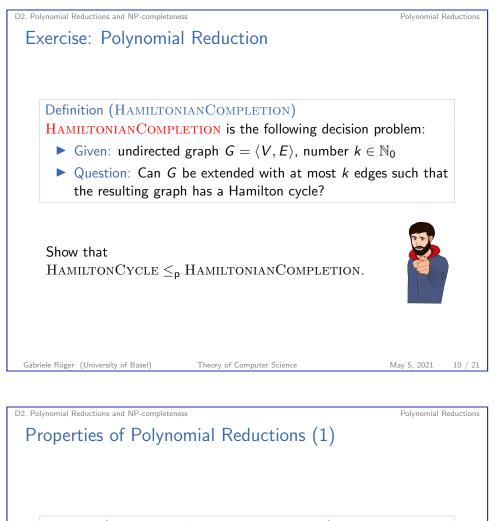
D2.1 Polynomial Reductions

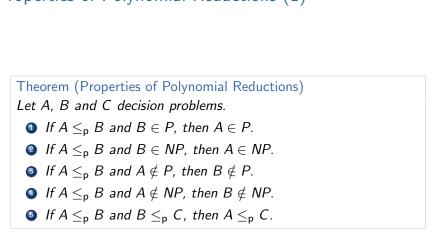


D2. Polynomial Reductions and NP-completeness Polynomial Reductions Polynomial Reductions: Idea Reductions are a common and powerful concept in computer science. We know them from Part C. ▶ The basic idea is that we solve a new problem by reducing it to a known problem. In complexity theory we want to use reductions that allow us to prove statements of the following kind: Problem A can be solved efficiently if problem B can be solved efficiently. ▶ For this, we need a reduction from A to B that can be computed efficiently itself (otherwise it would be useless for efficiently solving A).









Properties of Polynomial Reductions (2)

Proof.

for 1.:

We must show that there is a DTM accepting A in polynomial time.

We know:

- There is a DTM M_B that accepts B in time p, where p is a polynomial.
- There is a DTM M_f that computes a reduction from A to B in time q, where q is a polynomial.

Theory of Computer Science

Gabriele Röger (University of Basel)

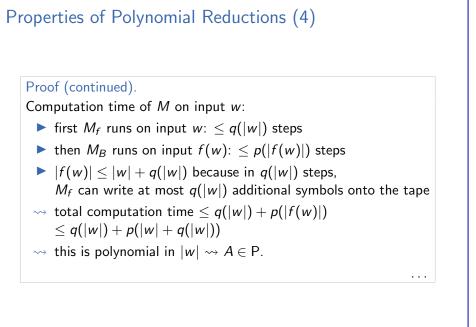
May 5, 2021

. . .

Polynomial Reductions

13 / 21

D2. Polynomial Reductions and NP-completeness



Polynomial Reductions

Properties of Polynomial Reductions (3)

Proof (continued).

Consider the machine M that first behaves like M_f , and then (after M_f stops) behaves like M_B on the output of M_f .

M accepts *A*:

- ▶ *M* behaves on input *w* as M_B does on input f(w), so it accepts *w* if and only if $f(w) \in B$.
- ▶ Because f is a reduction, $w \in A$ iff $f(w) \in B$.

Gabriele Röger (University of Basel)

Theory of Computer Science

May 5, 2021 14 / 21

. . .

D2. Polynomial Reductions and NP-completeness Properties of Polynomial Reductions (5) Polynomial Reductions

Proof (continued).

for 2.: analogous to 1., only that M_B and M are NTMs

of 3.+4.: equivalent formulations of 1.+2. (contraposition)

of 5.:

Let $A \leq_p B$ with reduction f and $B \leq_p C$ with reduction g. Then $g \circ f$ is a reduction of A to C.

The computation time of the two computations in sequence is polynomial by the same argument used in the proof for 1.

D2.2 NP-Hardness and NP-Completeness

Gabriele Röger (University of Basel)

Theory of Computer Science

D2. Polynomial Reductions and NP-completeness

NP-Complete Problems: Meaning

NP-Hardness and NP-Completeness

May 5, 2021

17 / 21

NP-hard problems are "at least as difficult"

- as all problems in NP. ▶ NP-complete problems are "the most difficult" problems in NP: all problems in NP can be reduced to them.
- ▶ If $A \in P$ for any NP-complete problem, then P = NP. (Why?)
- ▶ That means that either there are efficient algorithms for all NP-complete problems or for none of them.
- Do NP-complete problems actually exist?

NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)

Let B be a decision problem.

B is called NP-hard if $A \leq_p B$ for all problems $A \in NP$.

B is called NP-complete if $B \in NP$ and *B* is NP-hard.

German: NP-hart (selten: NP-schwer), NP-vollständig

Gabriele Röger (University of Basel)

Theory of Computer Science

D2. Polynomial Reductions and NP-completeness Summarv D2.3 Summary Theory of Computer Science 20 / 21

NP-Hardness and NP-Completeness

May 5, 2021

18 / 21

Summary

Summary

- ▶ polynomial reductions: A ≤_p B if there is a total function f computable in polynomial time, such that for all words w: w ∈ A iff f(w) ∈ B
- ▶ $A \leq_p B$ implies that A is "at most as difficult" as B
- polynomial reductions are transitive
- ▶ NP-hard problems $B: A \leq_p B$ for all $A \in NP$
- ▶ NP-complete problems B: $B \in NP$ and B is NP-hard

Theory of Computer Science

May 5, 2021 21 / 21