Theory of Computer Science
D2. Polynomial Reductions and NP-completeness

## Gabriele Röger

University of Basel
May 5, 2021

Theory of Computer Science
May 5, 2021 - D2. Polynomial Reductions and NP-completeness

D2.1 Polynomial Reductions

D2.2 NP-Hardness and NP-Completeness

D2.3 Summary

- Reductions are a common and powerful concept in computer science. We know them from Part C.
- The basic idea is that we solve a new problem by reducing it to a known problem.
- In complexity theory we want to use reductions that allow us to prove statements of the following kind: Problem A can be solved efficiently
if problem $B$ can be solved efficiently.
- For this, we need a reduction from $A$ to $B$
that can be computed efficiently itself
(otherwise it would be useless for efficiently solving $A$ ).


## Definition (Polynomial Reduction)

Let $A \subseteq \Sigma^{*}$ and $B \subseteq \Gamma^{*}$ be decision problems.
We say that $A$ can be polynomially reduced to $B$,
written $A \leq_{p} B$, if there is a function $f: \Sigma^{*} \rightarrow \Gamma^{*}$ such that:

- $f$ can be computed in polynomial time by a DTM
- i. e., there is a polynomial $p$ and a DTM $M$ such that $M$ computes $f(w)$ in at most $p(|w|)$ steps given input $w \in \Sigma^{*}$
- $f$ reduces $A$ to $B$
- i.e., for all $w \in \Sigma^{*}: w \in A$ iff $f(w) \in B$
$f$ is called a polynomial reduction from $A$ to $B$
German: A polynomiell auf $B$ reduzierbar, polynomielle Reduktion von $A$ auf $B$


## Definition (HamiltonCycle)

HamiltonCycle is the following decision problem:

- Given: undirected graph $G=\langle V, E\rangle$
- Question: Does $G$ contain a Hamilton cycle?


## Reminder:

Definition (Hamilton Cycle)
A Hamilton cycle of $G$ is a sequence of vertices in $V$,
$\pi=\left\langle v_{0}, \ldots, v_{n}\right\rangle$, with the following properties:

- $\pi$ is a path: there is an edge from $v_{i}$ to $v_{i+1}$ for all $0 \leq i<n$
- $\pi$ is a cycle: $v_{0}=v_{n}$
- $\pi$ is simple: $v_{i} \neq v_{j}$ for all $i \neq j$ with $i, j<n$
- $\pi$ is Hamiltonian: all nodes of $V$ are included in $\pi$
- Polynomial reductions are also called Karp reductions (after Richard Karp, who wrote a famous paper describing many such reductions in 1972).
- In practice, of course we do not have to specify a DTM for $f$ : it just has to be clear that $f$ can be computed in polynomial time by a deterministic algorithm.

Polynomial Reductions: Example (2)

Definition (TSP)
TSP (traveling salesperson problem) is the following decision problem:

- Given: finite set $S \neq \emptyset$ of cities, symmetric cost function cost : $S \times S \rightarrow \mathbb{N}_{0}$, cost bound $K \in \mathbb{N}_{0}$
- Question: Is there a tour with total cost at most $K$, i.e., a permutation $\left\langle s_{1}, \ldots, s_{n}\right\rangle$ of the cities with
$\sum_{i=1}^{n-1} \operatorname{cost}\left(s_{i}, s_{i+1}\right)+\operatorname{cost}\left(s_{n}, s_{1}\right) \leq K ?$
German: Problem der/des Handlungsreisenden
Theorem (HamiltonCycle $\leq_{p}$ TSP)
HamiltonCycle $\leq_{p}$ TSP.
Definition (HamiltonianCompletion)
HamiltonianCompletion is the following decision problem:
- Given: undirected graph $G=\langle V, E\rangle$, number $k \in \mathbb{N}_{0}$
- Question: Can $G$ be extended with at most $k$ edges such that the resulting graph has a Hamilton cycle?


## Show that

HamiltonCycle $\leq_{p}$ HamiltonianCompletion.


P: class of languages that are decidable in polynomial time
Theorem (Properties of Polynomial Reductions)
Let $A, B$ and $C$ decision problems. by a deterministic Turing machine
(1) If $A \leq_{p} B$ and $B \in P$, then $A \in P$.
(2) If $A \leq_{\mathrm{p}} B$ and $B \in N P$, then $A \in N P$
(3) If $A \leq_{p} B$ and $A \notin P$, then $B \notin P$.
(1) If $A \leq_{p} B$ and $A \notin N P$, then $B \notin N P$
(5) If $A \leq_{\mathrm{p}} B$ and $B \leq_{\mathrm{p}} C$, then $A \leq_{\mathrm{p}} C$.

Proof
for 1 .
We must show that there is a DTM accepting $A$
in polynomial time
We know:

- There is a DTM $M_{B}$ that accepts $B$ in time $p$, where $p$ is a polynomial
- There is a DTM $M_{f}$ that computes a reduction from $A$ to $B$ in time $q$, where $q$ is a polynomial.

Properties of Polynomial Reductions (4)

## Proof (continued).

Computation time of $M$ on input $w$ :

- first $M_{f}$ runs on input $w: \leq q(|w|)$ steps
- then $M_{B}$ runs on input $f(w): \leq p(|f(w)|)$ steps
- $|f(w)| \leq|w|+q(|w|)$ because in $q(|w|)$ steps,
$M_{f}$ can write at most $q(|w|)$ additional symbols onto the tape
$\rightsquigarrow$ total computation time $\leq q(|w|)+p(|f(w)|)$
$\leq q(|w|)+p(|w|+q(|w|))$
$\rightsquigarrow$ this is polynomial in $|w| \rightsquigarrow A \in \mathrm{P}$.


## Proof (continued).

Consider the machine $M$ that first behaves like $M_{f}$, and then (after $M_{f}$ stops) behaves like $M_{B}$ on the output of $M_{f}$.
$M$ accepts $A$ :

- $M$ behaves on input $w$ as $M_{B}$ does on input $f(w)$, so it accepts $w$ if and only if $f(w) \in B$.
- Because $f$ is a reduction, $w \in A$ iff $f(w) \in B$.

Proof (continued).
for 2.:
analogous to 1 ., only that $M_{B}$ and $M$ are NTMs
of $3 .+4$.:
equivalent formulations of $1 .+2$. (contraposition)
of 5 :
Let $A \leq_{p} B$ with reduction $f$ and $B \leq_{p} C$ with reduction $g$.
Then $g \circ f$ is a reduction of $A$ to $C$.
The computation time of the two computations in sequence
is polynomial by the same argument used in the proof for 1 .

## D2.2 NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)
Let $B$ be a decision problem.
$B$ is called NP-hard if $A \leq_{\mathrm{p}} B$ for all problems $A \in \mathrm{NP}$.
$B$ is called NP-complete if $B \in \mathrm{NP}$ and $B$ is NP-hard.
German: NP-hart (selten: NP-schwer), NP-vollständig


- polynomial reductions: $A \leq_{p} B$ if
there is a total function $f$ computable in polynomial time,
such that for all words $w: w \in A$ iff $f(w) \in B$
- $A \leq_{\mathrm{p}} B$ implies that $A$ is "at most as difficult" as $B$
- polynomial reductions are transitive
- NP-hard problems $B: A \leq_{p} B$ for all $A \in$ NP
- NP-complete problems $B: B \in \mathrm{NP}$ and $B$ is NP-hard

