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Polynomial Reductions: ldea

» Reductions are a common and powerful concept in computer
science. We know them from Part C.

» The basic idea is that we solve a new problem by reducing it
to a known problem.

P In complexity theory we want to use reductions
that allow us to prove statements of the following kind:
Problem A can be solved efficiently
if problem B can be solved efficiently.

» For this, we need a reduction from A to B
that can be computed efficiently itself
(otherwise it would be useless for efficiently solving A).
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Polynomial Reductions

Definition (Polynomial Reduction)
Let AC Y* and B C I'* be decision problems.
We say that A can be polynomially reduced to B,
written A <, B, if there is a function f : ¥* — I'* such that:
» f can be computed in polynomial time by a DTM
P i.e., there is a polynomial p and a DTM M such that M
computes f(w) in at most p(|w|) steps given input w € X*
» f reduces A to B
> je,forallweX*: weAiff f(w) e B

f is called a polynomial reduction from A to B

German: A polynomiell auf B reduzierbar,
polynomielle Reduktion von A auf B
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Polynomial Reductions: Remarks

» Polynomial reductions are also called Karp reductions
(after Richard Karp, who wrote a famous paper
describing many such reductions in 1972).

> In practice, of course we do not have to specify a DTM for f:
it just has to be clear that f can be computed
in polynomial time by a deterministic algorithm.

Gabriele Roger (University of Basel) Theory of Computer Science May 5, 2021 6 /21



D2. Polynomial Reductions and NP-completeness

Polynomial Reductions: Example (1)

Definition (HAMILTONCYCLE)

HaMILTONCYCLE is the following decision problem:
» Given: undirected graph G = (V, E)
» Question: Does G contain a Hamilton cycle?

Reminder:

Definition (Hamilton Cycle)
A Hamilton cycle of G is a sequence of vertices in V/,
T = (o, ..., Vn), with the following properties:

P> 7 is a path: there is an edge from v; to vj41 forall 0 <j < n
> 7 is a cycle: vp = v,

» missimple: v; # vj forall i # j with i,j <n

» 7 is Hamiltonian: all nodes of V are included in 7
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Polynomial Reductions: Example (2)

Definition (TSP)
TSP (traveling salesperson problem) is the following
decision problem:
» Given: finite set S # () of cities, symmetric cost function
cost: S x § — Ny, cost bound K € Np
» Question: Is there a tour with total cost at most K, i.e.,
a permutation (si, ..., s,) of the cities with
S 11 cost(si, si11) + cost(sy, s1) < K?

German: Problem der/des Handlungsreisenden
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Polynomial Reductions: Example (3)

Theorem (HAMILTONCYCLE <, TSP)
HAaMILTONCYCLE <, TSP.

Proof.
~ blackboard O
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Exercise: Polynomial Reduction

Definition (HAMILTONIANCOMPLETION)
HAMILTONIANCOMPLETION is the following decision problem:
» Given: undirected graph G = (V, E), number k € Ny

» Question: Can G be extended with at most k edges such that
the resulting graph has a Hamilton cycle?

Show that )
HAMILTONCYCLE <, HAMILTONIANCOMPLETION. |

Gabriele Roger (University of Basel) Theory of Computer Science May 5, 2021 10 / 21



D2. Polynomial Reductions and NP-completeness

Reminder: P and NP

Polynomial Reductions

P: class of languages that are decidable in polynomial time
by a deterministic Turing machine

NP: class of languages that are decidable in polynomial time

by a non-deterministic Turing machine
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Properties of Polynomial Reductions (1)

Theorem (Properties of Polynomial Reductions)
Let A, B and C decision problems.

Q@ IfA<,Band Bc P, then Ac P.
Q@ IfA<, B and B € NP, then Ac NP.
Q@ IfA<,Band A¢ P, then B ¢ P.
Q IfA<, Band A¢ NP, then B ¢ NP.
Q@ IfFA<,Band B<,C, then A<, C.
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Properties of Polynomial Reductions (2)

Proof.
for 1.

We must show that there is a DTM accepting A
in polynomial time.

We know:
» There is a DTM Mg that accepts B in time p,
where p is a polynomial.
» There is a DTM My that computes a reduction from A to B
in time g, where g is a polynomial.
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Properties of Polynomial Reductions (3)

Proof (continued).

Consider the machine M that first behaves like My, and then
(after My stops) behaves like Mg on the output of M.

M accepts A:

» M behaves on input w as Mg does on input f(w),
so it accepts w if and only if f(w) € B.

» Because f is a reduction, w € A iff f(w) € B.
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Properties of Polynomial Reductions (4)

Polynomial Reductions

Proof (continued).
Computation time of M on input w:
» first M¢ runs on input w: < q(|w|) steps
» then Mg runs on input f(w): < p(|f(w)]|) steps
> |f(w)| < |w|+ g(|w]|) because in g(|w]) steps,
M¢ can write at most g(|w|) additional symbols onto the tape
~~ total computation time < q(|w|) + p(|f(w)])
< q(lw]) + p(jw| + q(|w]))
~ this is polynomial in |w| ~~ A € P.
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Properties of Polynomial Reductions (5)

Proof (continued).

for 2.

analogous to 1., only that Mg and M are NTMs
of 3.4+4.:

equivalent formulations of 1.4-2. (contraposition)
of 5.

Let A <, B with reduction f and B <, C with reduction g.
Then g o f is a reduction of A to C.

The computation time of the two computations in sequence
is polynomial by the same argument used in the proof for 1. O
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2.2 NP-Hardness and
P-Completeness

D
N
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NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)
Let B be a decision problem.

B is called NP-hard if A <, B for all problems A € NP.
B is called NP-complete if B € NP and B is NP-hard.

German: NP-hart (selten: NP-schwer), NP-vollstandig
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NP-Complete Problems: Meaning

» NP-hard problems are “at least as difficult”
as all problems in NP.

» NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

» If A€ P for any NP-complete problem, then P = NP. (Why?)

» That means that either there are efficient algorithms
for all NP-complete problems or for none of them.

» Do NP-complete problems actually exist?
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D2.3 Summary
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Summary

» polynomial reductions: A <, B if
there is a total function f computable in polynomial time,
such that for all words w: w € A iff f(w) € B

A <, B implies that A is “at most as difficult” as B
polynomial reductions are transitive

NP-hard problems B: A <, B for all A € NP
NP-complete problems B: B € NP and B is NP-hard

vvyyy
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