Theory of Computer Science
D1. Nondeterministic Algorithms, P and NP

Gabriele Roger
University of Basel

May 3, 2021

Overview: Course

contents of this course:

A.

background v
> mathematical foundations and proof techniques

. automata theory and formal languages v/

> What is a computation?
Turing computability v
> What can be computed at all?

complexity theory
> What can be computed efficiently?

more computability theory
> Other models of computability

Motivation
©000000

Motivation

Nondeterminism Summ

Motivation asure Runtime? ion Problems

0O@00000

A Scenario (1)

Example Scenario

m You are a programmer at a logistics company.

m Your boss gives you the task of developing a program
to optimize the route of a delivery truck:

m The truck begins its route at the company depot.

m It has to visit 50 stops.

m You know the distances between all relevant locations
(stops and depot).

m Your program should compute a tour visiting all stops
and returning to the depot on a shortest route.

Motivation asure Runtime? Problems

[e]e] lele]ele)

A Scenario (2)

Example Scenario (ctd.)
m You work on the problem for weeks, but you do not manage
to complete the task.
m All of your attempted programs

m compute routes that are possibly suboptimal, or
m do not terminate in reasonable time (say: within a month).

m What do you say to your boss?

Motivation e Runtime?

[e]e]e] le]ele)

What You Don’t Want to Say

>

“l can't find an efficient algorithm,
| guess I'm just too dumb.”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 2

Motivation e Runtime?
000@000

“l can't find an efficient algorithm,
because no such algorithm is possible!”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 2

Motivation e >roblems No ism B
000@000 g o 00 00 s

Allows You to Say

“l can't find an efficient algorithm,
but neither can all these famous people.”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 3

Motivation easure Runtime?
0000000

Why Complexity Theory?

Complexity Theory

Complexity theory tells us which problems
can be solved quickly (“simple problems”)
and which ones cannot (“hard problems™).

German: Komplexitatstheorie

m This is useful in practice because simple and hard problems
require different techniques to solve.

m If we can show that a problem is hard we do not need to waste
our time with the (futile) search for a “simple” algorithm.

Motivation easure Runtime?

0000080

Test Your Intuition! (1)

The following slide lists some graph problems.
The input is always a directed graph G = (V, E).
How difficult are the problems in your opinion?

Sort the problems
from easiest (= requires least amount of time to solve)
to hardest (= requires most time to solve)

no justification necessary, just follow your intuition!

anonymous and not graded

Motivation

easure Runtime?

000000

Test Your Intuition! (2)

o

©©0© 00

Find a simple path (= without cycle)
from u € V to v € V with minimal length.
Find a simple path (= without cycle)
from u € V to v € V with maximal length.

Determine whether G is strongly connected
(every node is reachable from every other node).

Find a cycle (non-empty path from u to u for any u € V;
multiple visits of nodes are allowed).

Find a cycle that visits all nodes.
Find a cycle that visits a given node wu.
Find a path that visits all nodes without repeating a node.

Find a path that uses all edges without repeating an edge.

How to Measure Runtime?

@00000

How to Measure Runtime?

How to Measure Runtime?
000000

How to Measure Runtime?

m Time complexity is a way to measure how much time
it takes to solve a problem.

m How can we define such a measure appropriately?

German: Zeitkomplexitit/Zeitaufwand

How to Measure Runtime?
000000

Example Statements about Runtime

Example statements about runtime:

m “Running sort /usr/share/dict/words
on the computer dakar takes 0.035 seconds.”

m “With a 1 MiB input file, sort takes
at most 1 second on a modern computer.”

m “Quicksort is faster than sorting by insertion.”
m “Sorting by insertion is slow.”

~» Very different statements with different pros and cons.

How to Measure Runtime?

[e]e]e] lele]

Precise Statements vs. General Statements

Example Statement about Runtime

“Running sort /usr/share/dict/words
on the computer dakar takes 0.035 seconds.”

advantage: very precise

disadvantage: not general
m input-specific:
What if we want to sort other files?
m machine-specific:
What happens on a different computer?

m even situation-specific:
Will we get the same result tomorrow that we got today?

How to Measure Runtime?
000000

General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

How to Measure Runtime? Problems

[e]e]ele] Je]

General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

1. General Inputs

Instead of concrete inputs, we talk about general types of input:

m Example: runtime to sort an input of size n
in the worst case

m Example: runtime to sort an input of size n
in the average case

here: runtime for input size n in the worst case

How to Measure Runtime?
000000

General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

2. Ignoring Details

Instead of exact formulas for the runtime we specify
the order of magnitude:

m Example: instead of saying that we need time
[1.2nlog n] — 4n + 100, we say that we need time O(nlog n).

m Example: instead of saying that we need time O(nlog n),
O(n?) or O(n*), we say that we need polynomial time.

here: What can be computed in polynomial time?

How to Measure Runtime? Problems

[e]e]ele] Je]

General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

3. Abstract Cost Measures
Instead of the runtime on a concrete computer
we consider a more abstract cost measure:

m Example: count the number of executed
machine code statements

m Example: count the number of executed
Java byte code statements

m Example: count the number of element comparisons
of a sorting algorithms

here: count the computation steps of a Turing machine
(polynomially equivalent to other measures)

How to Measure Runtime?
00000e

Questions

o

N

Questions?

Decision Problems

®00000

Decision Problems

Vleasure Runtime? Decision Problems

O@0000

Decision Problems

m As before, we simplify our investigation
by restricting our attention to decision problems.
m More complex computational problems can be solved with

multiple queries for an appropriately defined decision problem
(“playing 20 questions”).

m Formally, decision problems are languages (as before), but we
use an informal “given” /“question” notation where possible.

easure Runtime? Decision Problems

[e]e] le]ele]

Example: Decision vs. General Problem (1)

Definition (Hamilton Cycle)
Let G = (V, E) be a (directed or undirected) graph.

A Hamilton cycle of G is a sequence of vertices in V,

m = (o, ..., Vn), with the following properties:
m 7 is a path: there is an edge from v; to vj41 forall 0 </ < n
m 7isacycle: vg=v,

m 7 is simple: v; # v; for all i # j with i,j <n

m 7 is Hamiltonian: all nodes of V are included in 7

German: Hamiltonkreis/Hamiltonzyklus

n Measure Runtime? Decision Problems No s
O O O 000800 00 00 000000 YOO000

Example: Decision vs. General Problem (2)

Example (Hamilton Cycles in Directed Graphs)

P: general problem DIRHAMILTONCYCLEGEN
m [nput: directed graph G = (V, E)

m Output: a Hamilton cycle of G or a message that none exists

D: decision problem DIRHAMILTONCYCLE
m Given: directed graph G = (V, E)
m Question: Does G contain a Hamilton cycle?

These problems are polynomially equivalent:

from a polynomial algorithm for one of the problems

one can construct a polynomial algorithm for the other problem.
(Without proof.)

easure Runtime? Decision Problems

[e]e]ele] Je]

Algorithms for Decision Problems

Algorithms for decision problems:

m Where possible, we specify algorithms for decision problems
in pseudo-code.
m Since they are only yes/no questions,
we do not have to return a general result.
m Instead we use the statements
m ACCEPT to accept the given input (“yes” answer) and
m REJECT to reject it (“no” answer).
m Where we must be more formal, we use Turing machines
and the notion of accepting from chapter B9.

Decision Problems
00000e

Questions

o

~

Questions?

Nondeterminism

9000000000

Nondeterminism

easure Runtime? Problems Nondeterminism

0@00000000

Nondeterminism

m To develop complexity theory, we need
the algorithmic concept of nondeterminism.
m already known for Turing machines (~~ chapter B10):
® An NTM can have more than one possible successor
configuration for a given configuration.
m Input x is accepted if there is at least one possible computation
(configuration sequence) that leads to the accept state.
m Here we analogously introduce nondeterminism
for pseudo-code.

German: Nichtdeterminismus

easure Runtime? >roblems Nondeterminism

00e0000000

Nondeterministic Algorithms

nondeterministic algorithms:

m All constructs of deterministic algorithms are also allowed in
nondeterministic algorithms: IF, WHILE, etc.

m Additionally, there is a nondeterministic assignment:
GUESS x; € {0,1}
where x; is a program variable.

German: nichtdeterministische Zuweisung

>roblems Nondeterminism
000@000000

Measure Runtime?

Nondeterministic Algorithms: Acceptance

m Meaning of GUESS x; € {0,1}:
x; is assigned either the value 0 or the value 1.

m This implies that the behavior of the program
on a given input is no longer uniquely defined:
there are multiple possible execution paths.

m The program accepts a given input if at least one
execution path leads to an ACCEPT statement.

m Otherwise, the input is rejected.

Note: asymmetry between accepting and rejecting!
(cf. Turing-recognizability)

>roblems Nondeterminism
0000800000

More Complex GUESS Statements

m We will also guess more than one bit at a time:
GUESS x € {1,2,...,n}

or more generally
GUESS x € S

for a set S.

m These are abbreviations and can be split into [log, n|
(or [log, |S|]) “atomic” GUESS statements.

leasure Runtime? Decision Problems Nondeterminism

[e]e]ele]e] lelelele}

Example: Nondeterministic Algorithms (1)

Example (DIRHAMILTONCYCLE)
input: directed graph G = (V, E)

start := an arbitrary node from V
current := start
remaining := V \ {start}
WHILE remaining # ():
GUESS next € remaining
IF (current, next) ¢ E:
REJECT
remaining = remaining \ {next}
current := next
IF (current, start) € E:
ACCEPT
ELSE:
REJECT

>roblems Nondeterminism
0000008000

Example: Nondeterministic Algorithms (2)

m With appropriate data structures, this algorithm solves
the problem in O(nlog n) program steps,
where n = |V/| + |E| is the size of the input.

m How many steps would a deterministic algorithm need?

on Vleasure Runtime? Problems Nondeterminism

Guess and Check

0000000800

m The DIRHAMILTONCYCLE example illustrates
a general design principle for nondeterministic algorithms:

guess and check

m In general, nondeterministic algorithms can
solve a problem by first guessing a “solution”
and then verifying that it is indeed a solution.
(In the example, these two steps are interleaved.)

m If solutions to a problem can be efficiently verified,
then the problem can also be efficiently solved
if nondeterminism may be used.

German: Raten und Priifen

easure Runtime? >roblems Nondeterminism

000000000

The Power of Nondeterminism

m Nondeterministic algorithms are very powerful
because they can “guess” the “correct” computation step.

m Or, interpreted differently: they go through
many possible computations “in parallel”,
and it suffices if one of them is successful.

m Can they solve problems efficiently (in polynomial time)
which deterministic algorithms cannot solve efficiently?

m This is the big question!

Nondeterminism
000000000e

Questions

o

~

Questions?

P and NP
@0000000000

P and NP

Vleasure Runtime? Problems \ s P and NP

O@000000000

Impact of Nondeterminism?

m We earlier established that deterministic and non-deterministic
Turing machines recognize the same class of languages.
— For this aspect, non-determinism did not make a difference.

m Now we consider what decision problems can be solved in
polynomial time.

m Does it make a difference whether we allow non-determinism?

Vleasure Runtime? Problems \ s P and NP

O@000000000

Impact of Nondeterminism?

m We earlier established that deterministic and non-deterministic
Turing machines recognize the same class of languages.
— For this aspect, non-determinism did not make a difference.

m Now we consider what decision problems can be solved in
polynomial time.

m Does it make a difference whether we allow non-determinism?

This is the famous P vs. NP question!

P and NP
00®00000000

Runtime of a Deterministic Turing Machine

Definition (Runtime of a DTM)

Let M be a DTM that halts on all inputs. The running time or
time complexity of M if the function f : N — N, where f(n) is the
maximum number of steps that M uses on any input of length n.

We say that
m M runs in time f and that

m M is an f time Turing machine.

P and NP
000@0000000

easure Runtime?

Definition (Big-O)
Let f and g be functions f, g : N — R™.

We say that f € O(g) if positive integers ¢ and ng exist such that
for every integer n > ng

f(n) < cg(n).

0O000@000000

Definition (Time Complexity Class TIME)
Let t : N — R™ be a function.

Define the time complexity class TIME(t(n))
to be the collection of all languages that are
decidable by an O(t) time Turing machine.

Vleasure Runtime? 1 Problems c s P and NP
[e [e] (e]e] [ee]ele] Telelelele]e)

Complexity Class P

Definition (Time Complexity Class TIME)

Let t : N — Rt be a function.

Define the time complexity class TIME(t(n))
to be the collection of all languages that are
decidable by an O(t) time Turing machine.

Definition (P)
P is the class of languages that are decidable in polynomial time by
a deterministic single-tape Turing machine. In other words,

P = [JTIME(n¥).
k

P and NP
00000@00000

Runtime of a Non-deterministic Turing Machine

Definition (Runtime of a NTM)

Let M be a NTM that is a decider, i.e. all its computation
branches halt on all inputs.

The running time or time complexity of M if the function
f : N — N, where f(n) is the maximum number of steps that M
uses on any branch of its computation on any input of length n.

H Measure Runtime? e >roblems No 1is P and NP
© 5 oC 00000080000

Complexity Class NP

Definition (Time Complexity Class NTIME)

Let t : N — Rt be a function.

Define the time complexity class NTIME(t(n))
to be the collection of all languages that are
decidable by an O(t) time nondeterministic Turing machine.

easure Runtime? Decision Problems Nondeterminism P and NP Summary
00 O 000 00000080000 O

Complexity Class NP

Definition (Time Complexity Class NTIME)

Let t : N — Rt be a function.

Define the time complexity class NTIME(t(n))
to be the collection of all languages that are
decidable by an O(t) time nondeterministic Turing machine.

Definition (NP)

NP is the class of languages that are decidable in polynomial time
by a non-deterministic single-tape Turing machine. In other words,

NP = | JNTIME(n").
k

on easure Runtime? >roblems s P and NP

P and NP: Remarks

m Sets of languages like P and NP that are defined
in terms of computation time of TMs
(or other computation models) are called complexity classes.

= We know that P C NP. (Why?)

m Whether the converse is also true is an open question:
this is the famous P-NP problem.

German: Komplexitatsklassen, P-NP-Problem

Vleasure Runtime? Problems

00000000800

Example: DIRHAMILTONCYCLE € NP

Example (DIRHAMILTONCYCLE € NP)

The nondeterministic algorithm of the previous section solves the
problem and can be implemented on an NTM in polynomial time.

m Is DIRHAMILTONCYCLE € P also true?
m The answer is unknown.

m So far, only exponential deterministic algorithms
for the problem are known.

P and NP
00000000080

easure Runtime?

Simulation of NTMs with DTMs

m Unlike DTMs, NTMs are not a realistic computation model:
they cannot be directly implemented on computers.

m But NTMs can be simulated by systematically trying
all computation paths, e. g., with a breadth-first search.

tion o easure Runtime? Decision Problems Nondeterminism P and NP Summary

Simulation of NTMs with DTMs

m Unlike DTMs, NTMs are not a realistic computation model:
they cannot be directly implemented on computers.

m But NTMs can be simulated by systematically trying
all computation paths, e. g., with a breadth-first search.

More specifically:

m Let M be an NTM that decides language L in time f,
where f(n) > n for all n € Np.

m Then we can specify a DTM M’ that decides L in time f/,
where f(n) = 20(f(m),
m without proof

(cf. “Introduction to the Theory of Computation”
by Michael Sipser (3rd edition), Theorem 7.11)

P and NP
0000000000 e

Questions

o

~

Questions?

Summary
@000

Summary

Vleasure Runtime? Problems

Summary (1)

m Complexity theory deals with the question which problems
can be solved efficiently and which ones cannot.

m here: focus on what can be computed in polynomial time

m To formalize this, we use Turing machines,
but other formalisms are polynomially equivalent.

m We consider decision problems, but the results often
directly transfer to general computational problems.

Summary
000

easure Runtime? Problems \ s Summary

[e]e] o]

Summary (2)

important concept: nondeterminism

m Nondeterministic algorithms can “guess”,
i.e., perform multiple computations “at the same time”.

m An input receives a “yes” answer if at least one
computation path accepts it.

m in NTMs: with nondeterministic transitions
(6(q, a) contains multiple elements)

m in pseudo-code: with GUESS statements

Summary
[e]ele]]

Summary (3)

m P: languages decidable by DTMs in polynomial time
m NP: languages decidable by NTMs in polynomial time
m P C NP but it is an open question whether P = NP.

	Motivation
	

	How to Measure Runtime?
	

	Decision Problems
	

	Nondeterminism
	

	P and NP
	

	Summary

