# Theory of Computer Science C5. Post Correspondence Problem

Gabriele Röger

University of Basel

April 25/27, 2021

# Theory of Computer Science April 25/27, 2021 — C5. Post Correspondence Problem

C5.1 Post Correspondence Problem

C5.2 (Un-)Decidability of PCP

# C5.1 Post Correspondence Problem

## More Options for Reduction Proofs?

- We can prove the undecidability of a problem with a reduction from an undecidable problem.
- ► The halting problem and the halting problem on the empty tape are possible options for this.
- both halting problem variants are quite similar 😌
- → We want a wider selection for reduction proofs
- $\rightarrow$  Is there some problem that is different in flavor?

# Post correspondence problem (named after mathematician Emil Leon Post)

## Post Correspondence Problem: Example

### Example (Post Correspondence Problem)

Given: different kinds of "'dominos"'

$$1: \underbrace{1}_{101} \qquad 2: \underbrace{10}_{00} \qquad 3: \underbrace{011}_{11}$$

(an infinite number of each kind)

Question: Is there a sequence of dominos such that the upper and lower row match (= are equal)

## Post Correspondence Problem: Definition

### Definition (Post Correspondence Problem PCP)

Given: Finite sequence of pairs of words

 $(t_1, b_1), (t_2, b_2), \dots, (t_k, b_k)$ , where  $t_i, b_i \in \Sigma^+$ (for an arbitrary alphabet  $\Sigma$ )

Question: Is there a sequence

$$i_1, i_2, \ldots, i_n \in \{1, \ldots, k\}, n \ge 1,$$
  
with  $t_{i_1} t_{i_2} \ldots t_{i_n} = b_{i_1} b_{i_2} \ldots b_{i_n}$ ?

A solution of the correspondence problem is such a sequence  $i_1, \ldots, i_n$ , which we call a match.

# Exercise (slido)

Consider PCP instance (11, 1), (0, 00), (10, 01), (01, 11).

Is 2, 4, 3, 3, 1 a match?



### Given-Question Form vs. Definition as Set

So far: problems defined as sets

Now: definition in Given-Question form

Definition (new problem P)

Given: Instance  $\mathcal{I}$ 

Question: Does  $\mathcal{I}$  have a specific property?

### corresponds to definitions

Definition (new problem P)

The problem P is the language

 $P = \{w \mid w \text{ encodes an instance } \mathcal{I} \text{ with the required property}\}.$ 

### Definition (new problem P)

The problem P is the language

 $P = \{ \langle \langle \mathcal{I} \rangle \mid \mathcal{I} \text{ is an instance with the required property} \}.$ 

### PCP Definition as Set

### We can alternatively define PCP as follows:

Definition (Post Correspondence Problem PCP)

```
The Post Correspondence Problem PCP is the set  PCP = \{ w \mid w \text{ encodes a sequence of pairs of words} \\ (t_1,b_1),(t_2,b_2),\ldots,(t_k,b_k), \text{ for which there is a sequence } i_1,i_2,\ldots,i_n \in \{1,\ldots,k\} \\ \text{ such that } t_ht_h\ldots t_h = b_hb_h\ldots b_h \}.
```

# C5.2 (Un-)Decidability of PCP

### Post Correspondence Problem

# PCP cannot be so hard, huh?

- Is it?

|   | 0110 |     | Formally: $K = ((1101, 1), (0110, 11), (1, 110))$ |
|---|------|-----|---------------------------------------------------|
| 1 | 11   | 110 | ightarrow Shortest match has length 252!          |

# PCP: Turing-recognizability

Theorem (Turing-recognizability of PCP)

PCP is Turing-recognizable.

#### Proof.

Recognition procedure for input w:

- If w encodes a sequence  $(t_1, b_1), \ldots, (t_k, b_k)$  of pairs of words: Test systematically longer and longer sequences  $i_1, i_2, \ldots, i_n$  whether they represent a match. If yes, terminate and return "yes".
- ▶ If w does not encode such a sequence: enter an infinite loop.

If  $w \in PCP$  then the procedure terminates with "yes", otherwise it does not terminate.

## PCP: Undecidability

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)

- Reduce MPCP to PCP (MPCP  $\leq$  PCP)
- **②** Reduce halting problem to MPCP ( $H \leq MPCP$ )
- $\rightarrow$  Let's get started...

### MPCP: Definition

### Definition (Modified Post Correspondence Problem MPCP)

Given: Sequence of word pairs as for PCP

Question: Is there a match  $i_1, i_2, \ldots, i_n \in \{1, \ldots, k\}$ 

with  $i_1 = 1$ ?

# Reducibility of MPCP to PCP(1)

#### Lemma

 $MPCP \leq PCP$ .

#### Proof.

Let  $\#, \$ \not\in \Sigma$ . For word  $w = a_1 a_2 \dots a_m \in \Sigma^+$  define

$$\bar{w} = \#a_1\#a_2\# \dots \#a_m\#$$
 $\hat{w} = \#a_1\#a_2\# \dots \#a_m$ 
 $\hat{w} = a_1\#a_2\# \dots \#a_m\#$ 

For input 
$$C = ((t_1, b_1), \dots, (t_k, b_k))$$
 define  $f(C) = ((\bar{t_1}, \hat{b_1}), (t_1, \hat{b_1}), (t_2, \hat{b_2}), \dots, (t_k, \hat{b_k}), (\$, \#\$))$ 

. . .

# Reducibility of MPCP to PCP(2)

Proof (continued).

$$f(C) = ((\bar{t_1}, \dot{b_1}), (t_1', \dot{b_1}), (t_2', \dot{b_2}), \dots, (t_k', \dot{b_k}), (\$, \#\$))$$

Function f is computable, and can suitably get extended to a total function. It holds that C has a solution with  $i_1 = 1$  iff f(C) has a solution:

Let  $1, i_2, i_3, \ldots, i_n$  be a solution for C. Then

 $1, i_2 + 1, \dots, i_n + 1, k + 2$  is a solution for f(C).

If  $i_1,\ldots,i_n$  is a match for f(C), then (due to the construction of the word pairs) there is a  $m\leq n$  such that  $i_1=1,i_m=k+2$  and  $i_j\in\{2,\ldots,k+1\}$  for  $j\in\{2,\ldots,m-1\}$ . Then  $1,i_2-1,\ldots,i_{m-1}-1$  is a solution for C.

 $\Rightarrow$  f is a reduction from MPCP to PCP.

### PCP: Undecidability – Where are we?

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)

- Reduce MPCP to PCP (MPCP  $\leq$  PCP)  $\checkmark$
- 2 Reduce halting problem to MPCP ( $H \leq MPCP$ )

# Reducibility of H to MPCP(1)

#### Lemma

 $H \leq MPCP$ .

#### Proof.

Goal: Construct for Turing machine

 $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}} \rangle$  and word  $w \in \Sigma^*$  an MPCP instance  $C = ((t_1, b_1), \dots, (t_k, b_k))$  such that

M started on w terminates iff  $C \in MPCP$ .

. .

# Reducibility of H to MPCP(2)

### Proof (continued).

#### Idea:

- Sequence of words describes sequence of configurations of the TM
- "t-row" follows "b-row"  $x: \boxed{\# c_0 \# c_1 \# c_2 \#}$   $y: \boxed{\# c_0 \# c_1 \# c_2 \# c_3 \#}$
- Configurations get mostly just copied, only the area around the head changes.
- After a terminating configuration has been reached: make row equal by deleting the configuration.

# Reducibility of H to MPCP(3)

### Proof (continued).

Alphabet of *C* is  $\Gamma \cup Q \cup \{\#\}$ .

1. Pair:  $(\#, \#q_0w\#)$ 

### Other pairs:

- **1** copy: (a, a) for all  $a \in \Gamma \cup \{\#\}$
- ② transition:

$$(qa, cq')$$
 if  $\delta(q, a) = (q', c, R)$   
 $(q\#, cq'\#)$  if  $\delta(q, \square) = (q', c, R)$ 

. . .

# Reducibility of H to MPCP(4)

### Proof (continued).

$$(bqa,q'bc)$$
 if  $\delta(q,a)=(q',c,L)$  for all  $b\in\Gamma$   
 $(bq\#,q'bc\#)$  if  $\delta(q,\Box)=(q',c,L)$  for all  $b\in\Gamma$   
 $(\#qa,\#q'c)$  if  $\delta(q,a)=(q',c,L)$   
 $(\#q\#,\#q'c\#)$  if  $\delta(q,\Box)=(q',c,L)$ 

- **③** deletion: (aq, q) and (qa, q) for all a ∈ Γ and  $q ∈ {q_{\mathsf{accept}}, q_{\mathsf{reject}}}$
- finish: (q##,#) for all  $q \in \{q_{\text{accept}}, q_{\text{reject}}\}$

. . .

# Reducibility of H to MPCP(5)

### Proof (continued).

" $\Rightarrow$ " If M terminates on input w, there is a sequence  $c_0,\ldots,c_t$  of configurations with

- $ightharpoonup c_0 = q_0 w$  is the start configuration
- $c_t$  is a terminating configuration  $c_t = uqv$  mit  $u, v \in \Gamma^*$  and  $q \in \{q_{\mathsf{accept}}, q_{\mathsf{reject}}\}$
- ►  $c_i \vdash c_{i+1}$  for i = 0, 1, ..., t-1

Then C has a match with the overall word

$$\#c_0\#c_1\#\ldots\#c_t\#c_t'\#c_t''\#\ldots\#q_e\#\#$$

Up to  $c_t$ : "'t-row"' follows "'b-row"'

From  $c'_t$ : deletion of symbols adjacent to terminating state. ...

# Reducibility of H to MPCP(6)

### Proof (continued).

" $\Leftarrow$ " If C has a solution, it has the form

$$#c_0#c_1#...#c_n##,$$

with  $c_0 = q_0 w$ . Moreover, there is an  $\ell \leq n$ , such that  $q_{\text{accept}}$  or  $q_{\text{reject}}$  occurs for the first time in  $c_\ell$ .

All  $c_i$  for  $i \leq \ell$  are configurations of M and  $c_i \vdash c_{i+1}$  for  $i \in \{0, \dots, \ell-1\}$ .

 $c_0, \ldots, c_\ell$  is hence the sequence of configurations of M on input w, which shows that the TM terminates.

## PCP: Undecidability - Done!

### Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)

- Reduce MPCP to PCP (MPCP  $\leq$  PCP)  $\checkmark$
- ② Reduce halting problem to MPCP ( $H \leq MPCP$ )  $\sqrt{\phantom{a}}$

#### Proof.

Due to  $H \leq \text{MPCP}$  and  $\text{MPCP} \leq \text{PCP}$  it holds that  $H \leq \text{PCP}$ . Since H is undecidable, also PCP must be undecidable.

### Summary

- Post Correspondence Problem: Find a sequence of word pairs s.t. the concatenation of all first components equals the one of all second components.
- ► The Post Correspondence Problem is Turing-recognizable but not decidable.