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What We Achieved So Far:

roblem on Empty Tape

Discussion

m We already know a concrete undecidable problem.
— halting problem

m We will see that we can derive further
undecidability results from the undecidability
of the halting problem.

m The central notion for this is reducing
one problem to another problem.

Summar
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[llustration

def is_odd(some_number) :
n = some_number + 1
return is_even(n)

m Decides whether a given number is odd based on. ..

m an algorithm that determines whether a number is even.
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Reduction: Idea (slido)

Assume that you have an algorithm that solves problem A
relying on a hypothetical algorithm for problem B.

def is_in_A(input_A):
input_B = <compute suitable instance based on input_A>
return is_in_B(input_B)
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Reduction: Idea (slido)

Assume that you have an algorithm that solves problem A
relying on a hypothetical algorithm for problem B.

def is_in_A(input_A):
input_B = <compute suitable instance based on input_A>
return is_in_B(input_B)

What (if anything) can you conclude
@ if there indeed is an algorithm for problem A?
@ if there indeed is an algorithm for problem B?
© if problem A is undecidable?
@ if problem B is undecidable?
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Questions
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Reduction: Definition

Definition (Reduction)

Let AC X* and B C I'* be languages, and let f : * — *
be a total and computable function such that for all x € ¥*:

x €A ifandonlyif f(x)e B.

Then we say that A can be reduced to B (in symbols: A < B),
and f is called a reduction from A to B. )

German: A ist auf B reduzierbar, Reduktion von A auf B
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Reduction Property

Theorem (Reductions vs. Turing-recognizability/Decidability)
Let A and B be languages with A < B. Then:
© /f B is decidable, then A is decidable.

@ If B is Turing-recognizable, then A is Turing-recognizable.
© If A is not decidable, then B is not decidable.

©Q If A is not Turing-recognizable, then B is not
Turing-recognizable.

~> In the following, we use 3. to show undecidability
for further problems.
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Reduction Property: Proof

Proof.

for 1.: If B is decidable then there is a DTM Mp that decides B.
The following algorithm decides A using reduction f from A to B.

On input x:
Q y:="1(x)
@ Simulate Mg on input y. This simulation terminates.

© If Mg accepted y, accept. Otherwise reject.
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Reduction Property: Proof

Proof.

for 1.: If B is decidable then there is a DTM Mp that decides B.
The following algorithm decides A using reduction f from A to B.

On input x:
Q y:="1(x)
@ Simulate Mg on input y. This simulation terminates.

© If Mg accepted y, accept. Otherwise reject.

for 2.: identical to (1), only that Mg only recognizes B and
therefore the simulation does not necessarily terminate if y ¢ B.
Since y & B iff x ¢ A, the procedure still recognizes A.
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Reduction Property: Proof

Proof.

for 1.: If B is decidable then there is a DTM Mp that decides B.
The following algorithm decides A using reduction f from A to B.

On input x:
Q y:="1(x)
@ Simulate Mg on input y. This simulation terminates.

© If Mg accepted y, accept. Otherwise reject.

for 2.: identical to (1), only that Mg only recognizes B and
therefore the simulation does not necessarily terminate if y ¢ B.
Since y & B iff x ¢ A, the procedure still recognizes A.

for 3./4.: contrapositions of 1./2. ~~ logically equivalent L]
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Reductions are Preorders

Theorem (Reductions are Preorders)

The relation “<" is a preorder:

© For all languages A:
A < A (reflexivity)

@ For all languages A, B, C:
If A< B and B < C, then A < C (transitivity)

v

German: schwache Halbordnung/Quasiordnung, Reflexivitat, Transitivitit
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Reductions are Preorders: Proof

for 1.: The function f(x) = x is a reduction from A to A
because it is total and computable and x € A iff f(x) € A.

for 2.: ~~ exercises ]
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Example

As an example
m we will consider problem Hp, a variant of the halting problem,
m ...and show that it is undecidable

m ...reducing H to Hp.
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Reminder: Halting Problem

Definition (Halting Problem)

The halting problem is the language

H = {w#x € {0,1,#}" | w,x € {0,1}",

M,, started on x terminates}
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Halting Problem on Empty Tape (1)

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

Ho = {w € {0,1}" | M,, started on ¢ terminates}.

German: Halteproblem auf leerem Band
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Halting Problem on Empty Tape (1)

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

Ho = {w € {0,1}" | M,, started on ¢ terminates}.

German: Halteproblem auf leerem Band

Note: Hp is Turing-recognizable. (\Why?)
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Halting Problem on Empty Tape (1)

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

Ho = {w € {0,1}" | M,, started on ¢ terminates}.

German: Halteproblem auf leerem Band

Note: Hp is Turing-recognizable. (\Why?)

Theorem (Undecidability of Halting Problem on Empty Tape)
The halting problem on the empty tape is undecidable.
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Halting Problem on Empty Tape (2)

We show H < Hj.
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Halting Problem on Empty Tape (2)

Proof.

We show H < Hj.

Consider the function f : {0, 1,#}* — {0,1}*

that computes the word f(z) for a given z € {0, 1, #}* as follows:
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Halting Problem on Empty Tape (2)

Proof.
We show H < Hj.

Consider the function f : {0, 1,#}* — {0,1}*
that computes the word f(z) for a given z € {0, 1, #}* as follows:

m Test if z has the form w#x with w,x € {0, 1}*.

m If not, return any word that is not in Hy
(e.g., encoding of a TM that instantly starts an endless loop).

m If yes, split z into w and x.
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Halting Problem on Empty Tape (2)

Proof.
We show H < Hj.

Consider the function f : {0, 1,#}* — {0,1}*
that computes the word f(z) for a given z € {0, 1, #}* as follows:

m Test if z has the form w#x with w,x € {0, 1}*.

m If not, return any word that is not in Hy
(e.g., encoding of a TM that instantly starts an endless loop).

m If yes, split z into w and x.
m Decode w toa TM M.
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Halting Problem on Empty Tape (3)

Proof (continued).

m Construct a TM M;j that behaves as follows:

m If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x # ¢); then stop
m otherwise, stop immediately
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Halting Problem on Empty Tape (3)

Proof (continued).

m Construct a TM M;j that behaves as follows:
m If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x # ¢); then stop
m otherwise, stop immediately
m Construct TM M that first runs M; and then M.
— M started on empty tape simulates M, on input x.
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Halting Problem on Empty Tape (3)

Proof (continued).

m Construct a TM M;j that behaves as follows:

m If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x # ¢); then stop
m otherwise, stop immediately

m Construct TM M that first runs M; and then M.
— M started on empty tape simulates M, on input x.

m Return the encoding of M.
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Halting Problem on Empty Tape (3)

Proof (continued).

m Construct a TM M;j that behaves as follows:

m If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x # ¢); then stop
m otherwise, stop immediately

m Construct TM M that first runs M; and then M.
— M started on empty tape simulates M, on input x.

m Return the encoding of M.

f is total and (with some effort) computable. Also:

z € H iff z = w#x and M,, run on x terminates
iff Mg () started on empty tape terminates
iff f(z) € Ho

~ H < Hp ~ Hp undecidable ]
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Questions

Questions?
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Summary

m reductions: “embedding” a problem as a special case
of another problem

m important method for proving undecidability:
reduce from a known undecidable problem to a new problem
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