Theory of Computer Science
C4. Reductions

Gabriele Roger
University of Basel

April 26, 2021

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 1/20



Theory of Computer Science
April 26, 2021 — C4. Reductions

C4.1 Introduction

C4.2 Reduction
C4.3 Halting Problem on Empty Tape

C4.4 Summary

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 2 /20



C4. Reductions Introduction

C4.1 Introduction

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 3/20



C4. Reductions

What We Achieved So Far: Discussion

» We already know a concrete undecidable problem.

— halting problem

> We will see that we can derive further
undecidability results from the undecidability
of the halting problem.

» The central notion for this is reducing
one problem to another problem.

Gabriele Roger (University of Basel) Theory of Computer Science

Introduction

April 26, 2021

4/



C4. Reductions Introduction

[llustration

def is_odd(some_number):
n = some_number + 1
return is_even(n)

» Decides whether a given number is odd based on. ..

P an algorithm that determines whether a number is even.

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 5 /20



C4. Reductions Introduction

Reduction: Idea (slido)

Assume that you have an algorithm that solves problem A
relying on a hypothetical algorithm for problem B.

def is_in_A(input_A):
input_B = <compute suitable instance based on input_A>
return is_in_B(input_B)

What (if anything) can you conclude
@ if there indeed is an algorithm for problem A?
@ if there indeed is an algorithm for problem B?
© if problem A is undecidable?
@ if problem B is undecidable?

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 6 /20



C4. Reductions Reduction

C4.2 Reduction

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 7 /20



C4. Reductions Reduction

Reduction: Definition

Definition (Reduction)
Let AC Y* and B C I'* be languages, and let f : £* — T*
be a total and computable function such that for all x € ¥*:

x€ A ifandonlyif f(x)e B.

Then we say that A can be reduced to B (in symbols: A < B),
and f is called a reduction from A to B.

German: A ist auf B reduzierbar, Reduktion von A auf B

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 8 /20



C4. Reductions Reduction

Reduction Property

Theorem (Reductions vs. Turing-recognizability /Decidability)
Let A and B be languages with A < B. Then:
@ If B is decidable, then A is decidable.
@ If B is Turing-recognizable, then A is Turing-recognizable.
© If A is not decidable, then B is not decidable.
@ If A is not Turing-recognizable, then B is not
Turing-recognizable.

~> In the following, we use 3. to show undecidability
for further problems.

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 9 /20



C4. Reductions Reduction

Reduction Property: Proof

Proof.
for 1.: If B is decidable then there is a DTM Mg that decides B.
The following algorithm decides A using reduction f from A to B.
On input x:

0 y:="1(x)

@ Simulate Mg on input y. This simulation terminates.

© If Mg accepted y, accept. Otherwise reject.

for 2.: identical to (1), only that Mg only recognizes B and
therefore the simulation does not necessarily terminate if y & B.
Since y & B iff x € A, the procedure still recognizes A.

for 3./4.: contrapositions of 1./2. ~~ logically equivalent Ol

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 10 /20



C4. Reductions Reduction

Reductions are Preorders

Theorem (Reductions are Preorders)
The relation “<" is a preorder:

© For all languages A:
A < A (reflexivity)

@ For all languages A, B, C:
If A< B and B < C, then A < C (transitivity)

German: schwache Halbordnung/Quasiordnung, Reflexivitat, Transitivitdt

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021

11 /20



Reduction

C4. Reductions

Reductions are Preorders: Proof

Proof.
for 1.: The function f(x) = x is a reduction from A to A

because it is total and computable and x € A iff f(x) € A.

O

for 2.: ~~ exercises

Gabriele Roger (University of Basel) Theory of Computer Science

April 26, 2021 12/

20



C4. Reductions Halting Problem on Empty Tape

C4.3 Halting Problem on Empty
Tape

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 13 /20



C4. Reductions Halting Problem on Empty Tape

Example

As an example
> we will consider problem Hp, a variant of the halting problem,
> .. .and show that it is undecidable

» ...reducing H to Hp.

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 14 / 20



C4. Reductions Halting Problem on Empty Tape

Reminder: Halting Problem

Definition (Halting Problem)
The halting problem is the language

H = {w#x € {0,1,#}" | w,x € {0,1}",
M,, started on x terminates}

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 15 / 20



C4. Reductions Halting Problem on Empty Tape

Halting Problem on Empty Tape (1)

Definition (Halting Problem on the Empty Tape)
The halting problem on the empty tape is the language

Ho = {w € {0,1}* | M,, started on ¢ terminates}.

German: Halteproblem auf leerem Band

Note: Hp is Turing-recognizable. (\Why?)

Theorem (Undecidability of Halting Problem on Empty Tape)
The halting problem on the empty tape is undecidable.

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 16 / 20



C4. Reductions Halting Problem on Empty Tape

Halting Problem on Empty Tape (2)

Proof.
We show H < Hj.

Consider the function f : {0, 1, #}* — {0,1}*
that computes the word f(z) for a given z € {0, 1, #}* as follows:

> Test if z has the form wi#x with w,x € {0, 1}*.

» If not, return any word that is not in Hy

(e.g., encoding of a TM that instantly starts an endless loop).

> If yes, split z into w and x.
» Decode wtoa TM M.

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021

17 / 20



C4. Reductions Halting Problem on Empty Tape

Halting Problem on Empty Tape (3)

Proof (continued).
» Construct a TM My that behaves as follows:

» If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x # ¢); then stop
> otherwise, stop immediately

» Construct TM M that first runs M; and then M>.
— M started on empty tape simulates M5 on input x.

» Return the encoding of M.

f is total and (with some effort) computable. Also:

z € H iff z= w#x and M,, run on x terminates
iff Mg () started on empty tape terminates
iff £(z) € Ho

~+ H < Hp ~~ Hp undecidable

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021

18



C4. Reductions Summary

C4.4 Summary

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 19 / 20



C4. Reductions Summary

Summary

> reductions: “embedding” a problem as a special case
of another problem

» important method for proving undecidability:
reduce from a known undecidable problem to a new problem

Gabriele Roger (University of Basel) Theory of Computer Science April 26, 2021 20 / 20



	Introduction
	

	Reduction
	

	Halting Problem on Empty Tape
	

	Summary
	


