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C4. Reductions Introduction

C4.1 Introduction
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C4. Reductions

What We Achieved So Far: Discussion

» We already know a concrete undecidable problem.

— halting problem

> We will see that we can derive further
undecidability results from the undecidability
of the halting problem.

» The central notion for this is reducing
one problem to another problem.
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C4. Reductions Introduction

[llustration

def is_odd(some_number):
n = some_number + 1
return is_even(n)

» Decides whether a given number is odd based on. ..

P an algorithm that determines whether a number is even.
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C4. Reductions Introduction

Reduction: Idea (slido)

Assume that you have an algorithm that solves problem A
relying on a hypothetical algorithm for problem B.

def is_in_A(input_A):
input_B = <compute suitable instance based on input_A>
return is_in_B(input_B)

What (if anything) can you conclude
@ if there indeed is an algorithm for problem A?
@ if there indeed is an algorithm for problem B?
© if problem A is undecidable?
@ if problem B is undecidable?
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C4. Reductions Reduction

C4.2 Reduction
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C4. Reductions Reduction

Reduction: Definition

Definition (Reduction)
Let AC Y* and B C I'* be languages, and let f : £* — T*
be a total and computable function such that for all x € ¥*:

x€ A ifandonlyif f(x)e B.

Then we say that A can be reduced to B (in symbols: A < B),
and f is called a reduction from A to B.

German: A ist auf B reduzierbar, Reduktion von A auf B
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C4. Reductions Reduction

Reduction Property

Theorem (Reductions vs. Turing-recognizability /Decidability)
Let A and B be languages with A < B. Then:
@ If B is decidable, then A is decidable.
@ If B is Turing-recognizable, then A is Turing-recognizable.
© If A is not decidable, then B is not decidable.
@ If A is not Turing-recognizable, then B is not
Turing-recognizable.

~> In the following, we use 3. to show undecidability
for further problems.
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C4. Reductions Reduction

Reduction Property: Proof

Proof.
for 1.: If B is decidable then there is a DTM Mg that decides B.
The following algorithm decides A using reduction f from A to B.
On input x:

0 y:="1(x)

@ Simulate Mg on input y. This simulation terminates.

© If Mg accepted y, accept. Otherwise reject.

for 2.: identical to (1), only that Mg only recognizes B and
therefore the simulation does not necessarily terminate if y & B.
Since y & B iff x € A, the procedure still recognizes A.

for 3./4.: contrapositions of 1./2. ~~ logically equivalent Ol
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C4. Reductions Reduction

Reductions are Preorders

Theorem (Reductions are Preorders)
The relation “<" is a preorder:

© For all languages A:
A < A (reflexivity)

@ For all languages A, B, C:
If A< B and B < C, then A < C (transitivity)

German: schwache Halbordnung/Quasiordnung, Reflexivitat, Transitivitdt
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Reduction

C4. Reductions

Reductions are Preorders: Proof

Proof.
for 1.: The function f(x) = x is a reduction from A to A

because it is total and computable and x € A iff f(x) € A.

O

for 2.: ~~ exercises
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C4. Reductions Halting Problem on Empty Tape

C4.3 Halting Problem on Empty
Tape
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C4. Reductions Halting Problem on Empty Tape

Example

As an example
> we will consider problem Hp, a variant of the halting problem,
> .. .and show that it is undecidable

» ...reducing H to Hp.
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C4. Reductions Halting Problem on Empty Tape

Reminder: Halting Problem

Definition (Halting Problem)
The halting problem is the language

H = {w#x € {0,1,#}" | w,x € {0,1}",
M,, started on x terminates}
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C4. Reductions Halting Problem on Empty Tape

Halting Problem on Empty Tape (1)

Definition (Halting Problem on the Empty Tape)
The halting problem on the empty tape is the language

Ho = {w € {0,1}* | M,, started on ¢ terminates}.

German: Halteproblem auf leerem Band

Note: Hp is Turing-recognizable. (\Why?)

Theorem (Undecidability of Halting Problem on Empty Tape)
The halting problem on the empty tape is undecidable.
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C4. Reductions Halting Problem on Empty Tape

Halting Problem on Empty Tape (2)

Proof.
We show H < Hj.

Consider the function f : {0, 1, #}* — {0,1}*
that computes the word f(z) for a given z € {0, 1, #}* as follows:

> Test if z has the form wi#x with w,x € {0, 1}*.

» If not, return any word that is not in Hy

(e.g., encoding of a TM that instantly starts an endless loop).

> If yes, split z into w and x.
» Decode wtoa TM M.
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C4. Reductions Halting Problem on Empty Tape

Halting Problem on Empty Tape (3)

Proof (continued).
» Construct a TM My that behaves as follows:

» If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x # ¢); then stop
> otherwise, stop immediately

» Construct TM M that first runs M; and then M>.
— M started on empty tape simulates M5 on input x.

» Return the encoding of M.

f is total and (with some effort) computable. Also:

z € H iff z= w#x and M,, run on x terminates
iff Mg () started on empty tape terminates
iff £(z) € Ho

~+ H < Hp ~~ Hp undecidable
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C4. Reductions Summary

C4.4 Summary
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C4. Reductions Summary

Summary

> reductions: “embedding” a problem as a special case
of another problem

» important method for proving undecidability:
reduce from a known undecidable problem to a new problem
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