Theory of Computer Science
B11. Type-1 and Type-0 Languages: Closure & Decidability

Gabriele Roger
University of Basel

April 12, 2021

Turing Machines vs. Grammars

9000000000

Turing Machines vs. Grammars

Turing Machines vs. Grammars
0®00000000

and Decidability

Turing Machines

We have seen several variants of Turing machines:
m Deterministic TM with head movements left or right
m Deterministic TM with head movements left, right or neutral
m Multitape Turing machines

m Nondeterministic Turing machines

All variants recognize the same languages.

Turing Machines vs. Grammars e and Decidability

0O@00000000

Turing Machines

We have seen several variants of Turing machines:
m Deterministic TM with head movements left or right
m Deterministic TM with head movements left, right or neutral
m Multitape Turing machines

m Nondeterministic Turing machines

All variants recognize the same languages.

We mentioned earlier that we can relate Turing machines to the
Type-1 and Type-0 languages.

Turing Machines vs. Grammars Closure and Decidability

00@0000000

Reminder: Context-sensitive Grammar

Type-1 languages are also called context-sensitive languages.

Definition (Context-sensitive Grammar)
A context-sensitive grammar is a 4-tuple (V, X, R, S) with
m V finite set of variables (nonterminal symbols)
m Y finite alphabet of terminal symbols with VN'YX = ()
B RC(VUD)'V(VUI)* x (VUX)* finite set of rules,
where all rules are of the form aBy — af~y
with B€ V and a,y € (VUX)*and B € (VUI)T.
Exception: S — ¢ is allowed if S never occurs on the
right-hand side of a rule.

m S € V start variable.

Turing Machines vs. Grammars
[e]e]e] lelelelele]e]

One Automata Model for Two Grammar Types?

Don't we need
different automata models for
context-sensitive and Type-0

languages?

Picture courtesy of stockimages / FreeDigitalPhotos.net

Turing Machines vs. Grammars and Decidability

0000@00000

Linear Bounded Automata: ldea

m Linear bounded automata are NTMs that may only use
the part of the tape occupied by the input word.

m one way of formalizing this: NTMs where blank symbol
may never be replaced by a different symbol

Summar

Turing Machines vs. Grammars
[e]e]e]e]e] le]elele)

and Decidability

Linear Bounded Turing Machines: Definition

Definition (Linear Bounded Automata)

Summar

An NTM M = <Q; Z, r7 57 40, Gaccept qreject>

is called a linear bounded automaton (LBA)

if for all g € Q \ {Gaccepts Greject } and all transition rules
(¢',c,y) € d(g,0) we have ¢ = [.

German: linear beschrankte Turingmaschine

Turing Machines vs. Grammars
[e]e]e]e]o]e] lolele)

LBAs Recognize Type-1 Languages

The languages that can be recognized by linear bounded automata
are exactly the context-sensitive (type-1) languages.

Without proof.

re and Decidability

Turing Machines vs. Grammars
0000008000

LBAs Recognize Type-1 Languages

The languages that can be recognized by linear bounded automata
are exactly the context-sensitive (type-1) languages.

Without proof.

proof sketch for grammar = NTM direction:
m computation of the NTM follows the production of the word
in the grammar in opposite order
m accept when only the start symbol (and blanks)
are left on the tape

m because the language is context-sensitive,
we never need additional space on the tape
(empty word needs special treatment)

Turing Machines vs. Grammars
0000000800

NTMs Recognize Type-0 Languages

The languages that can be recognized by nondeterministic
Turing machines are exactly the type-0 languages.

Without proof.

Turing Machines vs. Grammars e e and Decidability

0000000800

NTMs Recognize Type-0 Languages

The languages that can be recognized by nondeterministic
Turing machines are exactly the type-0 languages.

Without proof.

proof sketch for grammar = NTM direction:
m analogous to previous proof

m for grammar rules wy — wy with [wy| > |wal,
we must “insert” symbols into the existing tape content;
this is a bit tedious, but not very difficult

Turing Machines vs. Grammars
0000000080

What about the Deterministic Variants?

We know that DTMs and NTMs recognize the same languages.
Hence:

The Turing-recognizable languages are exactly the Type-0
languages.

Turing Machines vs. Grammars Closure and Decidability Summar
0000000080

What about the Deterministic Variants?

We know that DTMs and NTMs recognize the same languages.
Hence:

The Turing-recognizable languages are exactly the Type-0
languages.

Note: It is an open problem whether deterministic LBAs
can recognize exactly the type-1 languages.

Turing Machines vs. Grammars

000000000 e

Questions

N

~

Questions?

Closure and Decidability

@000

Closure Properties and Decidability

Closure and Decidability
fo] Yolo)

Closure Properties

Intersection Union Complement Concatenation Star

Type 2 No Yes No Yes Yes
Type 0 Yes(?) Yes(1) No(3) Yes(1) Yes(1)
Proofs?

(1) proof via grammars, similar to context-free cases
(2) without proof
(3) proof in later chapters (part C)

Decidability

Word Emptiness Equivalence Intersection
problem problem problem problem
Type 2 Yes Yes No No
Type 0 No(#) No(4) No(4) No(4)

Proofs?

(1) same argument we used for context-free languages

(2) because already undecidable for context-free languages
(3) without proof

(4) proofs in later chapters (part C)

Closure and Decidability

[e]e]e])

Questions

N

N

Questions?

Summary
[ele}

Summary

vs. Grammars e and Decidability Summary

oeo

Summary

m Turing machines recognize exactly the type-0 languages.

m Linear bounded automata recognize exactly
the context-sensitive languages.
m The context-sensitive and type-0 languages are closed
under almost all usual operations.
m exception: type-0 not closed under complement
m For context-sensitive and type-0 languages
almost no problem is decidable.
m exception: word problem for context-sensitive lang. decidable

What's Next?

s. Grammars Closure and Decidability Summary
ooe

contents of this course:

A.

background v/
> mathematical foundations and proof techniques

. automata theory and formal languages v/

> What is a computation?
Turing computability
> What can be computed at all?

complexity theory
> What can be computed efficiently?

more computability theory
> Other models of computability

	Turing Machines vs. Grammars
	

	Closure Properties and Decidability
	

	Summary

