

Theory of Computer Science

B7. Context-free Languages: Normal Form and PDA

Gabriele Röger

University of Basel

March 29, 2021

Theory of Computer Science

March 29, 2021 — B7. Context-free Languages: Normal Form and PDA

B7.1 Context-free Grammars

B7.2 Chomsky Normal Form

B7.3 Push-Down Automata

B7.4 Summary

B7.1 Context-free Grammars

Repetition: Context-free Grammars

Definition (Context-free Grammar)

A **context-free grammar** is a 4-tuple $\langle V, \Sigma, R, S \rangle$ with

- 1 V finite set of variables,
- 2 Σ finite alphabet of terminal symbols (with $V \cap \Sigma = \emptyset$),
- 3 $R \subseteq V \times (V \cup \Sigma)^*$ finite set of rules,
- 4 $S \in V$ start variable.

Short-hand Notation for Rule Sets

We abbreviate several rules with the same left-hand side variable in a single line, using “|” for separating the right-hand sides.

For example, we write

$$X \rightarrow 0Y1 \mid XY$$

for:

$$X \rightarrow 0Y1 \text{ and}$$

$$X \rightarrow XY$$

Context-free Grammars: Exercise

We have used the pumping lemma for regular languages to show that $L = \{a^n b^n \mid n \in \mathbb{N}_0\}$ is not regular.

Show that it is context-free by specifying a suitable grammar G with $\mathcal{L}(G) = L$.

B7.2 Chomsky Normal Form

Chomsky Normal Form: Motivation

As in other kinds of structured objects, **normal forms** for grammars are useful:

- ▶ they show which aspects are critical for defining grammars and which ones are just syntactic sugar
- ▶ they allow proofs and algorithms to be restricted to a limited set of grammars (inputs): those in normal form

Hence we now consider a **normal form** for context-free grammars.

Chomsky Normal Form: Definition

Definition (Chomsky Normal Form)

A context-free grammar G is in **Chomsky normal form (CNF)** if all rules have one of the following three forms:

- ▶ $A \rightarrow BC$ with variables A, B, C
and B and C are not the start variable, or
- ▶ $A \rightarrow a$ with variable A and terminal symbol a , or
- ▶ $S \rightarrow \varepsilon$ with start variable S .

German: Chomsky-Normalform

formally: rule set $R \subseteq (V \times ((V \setminus \{S\})(V \setminus \{S\}) \cup \Sigma)) \cup \{\langle S, \varepsilon \rangle\}$

Chomsky Normal Form: Theorem

Theorem

For every context-free grammar G there is a context-free grammar G' in Chomsky normal form with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof.

The following algorithm converts the rule set of $G = \langle V, \Sigma, R, S \rangle$ into CNF:

Step 1: Add new start variable S' .

Add a new variable S' which will be the start variable, and add a rule $S' \rightarrow S$, where S is the original start variable.

Afterwards, the (new) start variable does not occur on the right-hand side of a rule.

We will write V' for the new variable set ($V' = V \cup \{S'\}$) and R' for the new rule set.

...

Chomsky Normal Form: Theorem

Proof (continued).

Step 2: Eliminate ε -rules of the form $A \rightarrow \varepsilon$ ($A \neq S'$).

- ▶ Let V_ε be the set of variable from which one can derive the empty word. We find this set V_ε by first collecting all variables $A \in V'$ with rule $A \rightarrow \varepsilon \in R'$ and then successively adding additional variables B if there is a rule $B \rightarrow A_1 A_2 \dots A_k \in R'$ and the variables A_i are already in the set for all $1 \leq i \leq k$.
- ▶ Add rules that obviate the need for $A \rightarrow \varepsilon$ rules: for every existing rule $B \rightarrow w \in R'$ with $B \in V'$, $w \in (V' \cup \Sigma)^+$, let I_ε be the set of positions where w contains a variable $A \in V_\varepsilon$. For every non-empty set $I' \subseteq I_\varepsilon$, add a new rule $B \rightarrow w'$, where w' is constructed from w by removing the variables at all positions in I' .
- ▶ Remove all rules of the form $A \rightarrow \varepsilon$ ($A \neq S'$).

...

Step 2: Example

Consider $G = \langle \{X, Y, Z, S\}, \{a, b\}, R, S \rangle$ with rules:

$$S \rightarrow \varepsilon \mid XY$$

$$X \rightarrow aXYbX \mid YZ \mid ab$$

$$Y \rightarrow \varepsilon \mid b$$

$$Z \rightarrow \varepsilon \mid a$$

Chomsky Normal Form: Theorem

Proof (continued).

Step 3: Eliminate rules of the form $A \rightarrow B$ with variables A, B .

If there are sets of variables $\{B_1, \dots, B_k\}$ with rules

$B_1 \rightarrow B_2, B_2 \rightarrow B_3, \dots, B_{k-1} \rightarrow B_k, B_k \rightarrow B_1$,

then replace these variables by a new variable B .

We use V'' to denote the resulting set of variables.

Define a strict total order $<$ on the variables such that a rule $A \rightarrow B$ implies that $A < B$. Iterate from the largest to the smallest variable A and eliminate all rules of the form $A \rightarrow B$ while adding rules $A \rightarrow w$ for every rule $B \rightarrow w$ with $w \in (V'' \cup \Sigma)^+$.

...

Step 3: Example

Consider $G = \langle \{X, Y, Z, S\}, \{a, b\}, R, S \rangle$ with rules:

$$S \rightarrow \varepsilon \mid X$$

$$X \rightarrow aZbY \mid Y \mid ab$$

$$Y \rightarrow Z \mid b$$

$$Z \rightarrow Y \mid bXa$$

Chomsky Normal Form: Theorem

Proof (continued).

Step 4: Eliminate rules with terminal symbols on the right-hand side that do not have the form $A \rightarrow a$.

For every terminal symbol $a \in \Sigma$ add a new variable A_a and the rule $A_a \rightarrow a$.

Replace all terminal symbols in all rules that do not have the form $A \rightarrow a$ with the corresponding newly added variables. . .

Chomsky Normal Form: Theorem

Proof (continued).

Step 5: Eliminate rules of the form $A \rightarrow B_1 B_2 \dots B_k$ with $k > 2$

For every rule of the form $A \rightarrow B_1 B_2 \dots B_k$ with $k > 2$, add new variables C_2, \dots, C_{k-1} and replace the rule with

$$A \rightarrow B_1 C_2$$

$$C_2 \rightarrow B_2 C_3$$

⋮

$$C_{k-1} \rightarrow B_{k-1} B_k$$

Chomsky Normal Form: Exercise

(Example taken from textbook by Sipser)

Consider $G = \langle \{A, B, S\}, \{a, b\}, R, S \rangle$ with rules:

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow \varepsilon \mid b$$

Specify a grammar G' in CNF with $\mathcal{L}(G') = \mathcal{L}(G)$.

Chomsky Normal Form: Length of Derivations

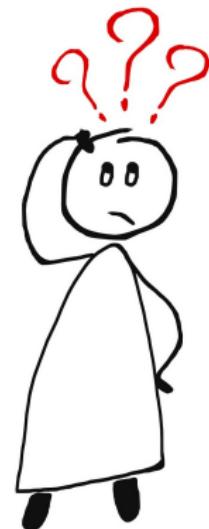
Observation

Let G be a grammar in Chomsky normal form, and let $w \in \mathcal{L}(G)$ be a non-empty word generated by G . Then all derivations of w have exactly $2|w| - 1$ derivation steps.

Proof.

~~> Exercises

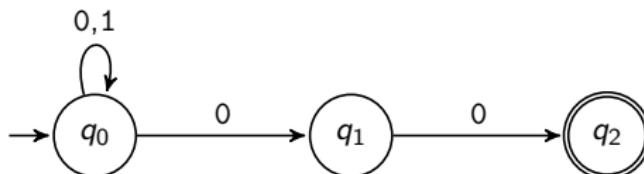
Questions



Questions?

B7.3 Push-Down Automata

Limitations of Finite Automata

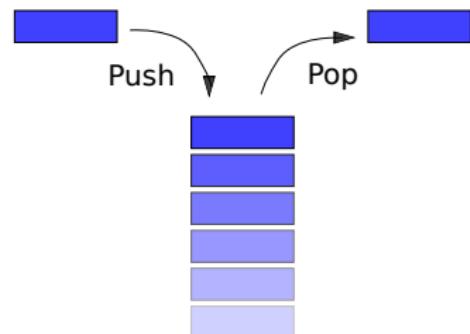


- ▶ Language L is regular.
 \iff There is a finite automaton that accepts L .
- ▶ What information can a finite automaton “store” about the already read part of the word?
- ▶ Infinite memory would be required for $L = \{x_1x_2 \dots x_nx_n \dots x_2x_1 \mid n > 0, x_i \in \{a, b\}\}$.
- ▶ therefore: extension of the automata model with memory

Stack

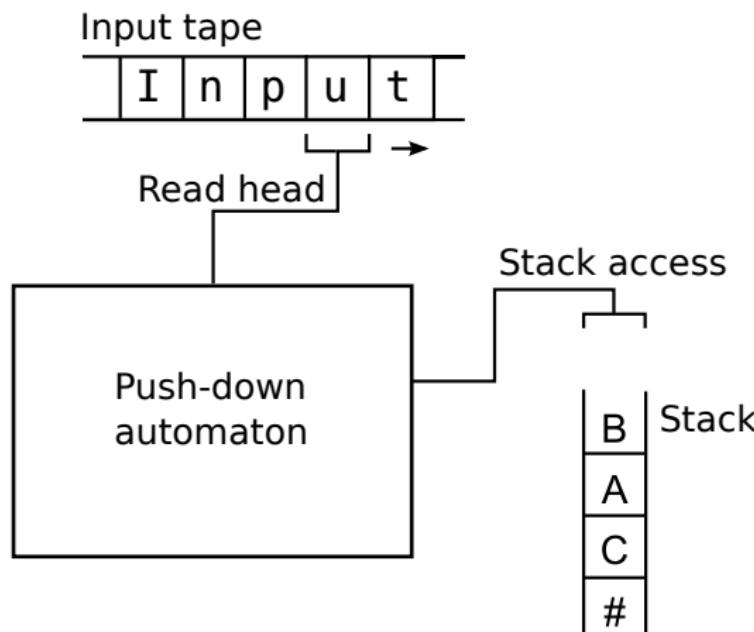
A **stack** is a data structure following the **last-in-first-out (LIFO)** principle supporting the following operations:

- ▶ **push**: puts an object on top of the stack
- ▶ **pop**: removes the object at the top of the stack



German: Keller, Stapel

Push-down Automata: Visually



German: Kellerautomat, Eingabeband, Lesekopf, Kellerzugriff

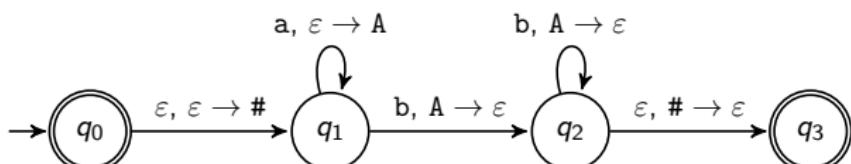
Push-down Automaton for $\{a^n b^n \mid n \in \mathbb{N}_0\}$: Idea

- ▶ As long as you read symbols a , push an A on the stack.
- ▶ As soon as you read a symbol b , pop an A off the stack as long as you read b .
- ▶ If reading the input is finished exactly when the stack becomes empty, accept the input.
- ▶ If there is no A to pop when reading a b , or there is still an A on the stack after reading all input symbols, or if you read an a following a b then reject the input.

Push-down Automata: Non-determinism

- ▶ PDAs are **non-deterministic** and can allow several next transitions from a configuration.
- ▶ Like NFAs, PDAs can have transitions that do not read a symbol from the input.
- ▶ Similarly, there can be transitions that do not pop and/or push a symbol off/to the stack.

Deterministic variants of PDAs are strictly less expressive, i. e. there are languages that can be recognized by a (non-deterministic) PDA but not the deterministic variant.

Push-down Automaton for $\{a^n b^n \mid n \in \mathbb{N}_0\}$: Diagram

Push-down Automata: Definition

Definition (Push-down Automaton)

A **push-down automaton (PDA)** is a 6-tuple

$M = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$ with

- ▶ Q finite set of states
- ▶ Σ the input alphabet
- ▶ Γ the stack alphabet
- ▶ $\delta : Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(Q \times (\Gamma \cup \{\varepsilon\}))$ the transition function
- ▶ $q_0 \in Q$ the start state
- ▶ $F \subseteq Q$ is the set of **accept states**

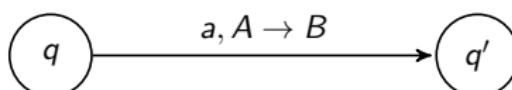
German: Kellerautomat, Eingabealphabet, Kelleralphabet,
Überführungsfunktion

Push-down Automata: Transition Function

Let $M = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$ be a push-down automaton.

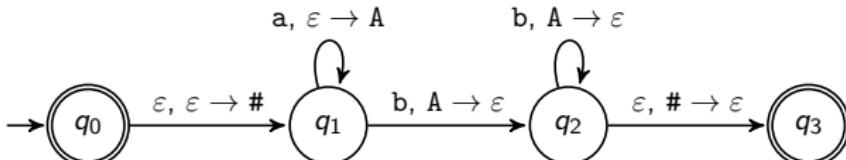
What is the Intuitive Meaning of the Transition Function δ ?

- $\langle q', B \rangle \in \delta(q, a, A)$: If M is in state q , reads symbol a and has A as the topmost stack symbol, then M **can** transition to q' in the next step popping A off the stack and pushing B on the stack.



- special case $a = \varepsilon$ is allowed (spontaneous transition)
- special case $A = \varepsilon$ is allowed (no pop)
- special case $B = \varepsilon$ is allowed (no push)

Push-down Automaton for $\{a^n b^n \mid n \in \mathbb{N}_0\}$: Formally



$M = \langle \{q_0, q_1, q_2, q_3\}, \{a, b\}, \{A, \#\}, \delta, q_0, \{q_0, q_3\} \rangle$ with

$\delta(q_0, a, A) = \emptyset$	$\delta(q_0, b, A) = \emptyset$	$\delta(q_0, \varepsilon, A) = \emptyset$
$\delta(q_0, a, \#) = \emptyset$	$\delta(q_0, b, \#) = \emptyset$	$\delta(q_0, \varepsilon, \#) = \emptyset$
$\delta(q_0, a, \varepsilon) = \emptyset$	$\delta(q_0, b, \varepsilon) = \emptyset$	$\delta(q_0, \varepsilon, \varepsilon) = \{(q_1, \#)\}$
$\delta(q_1, a, A) = \emptyset$	$\delta(q_1, b, A) = \{(q_2, \varepsilon)\}$	$\delta(q_1, \varepsilon, A) = \emptyset$
$\delta(q_1, a, \#) = \emptyset$	$\delta(q_1, b, \#) = \emptyset$	$\delta(q_1, \varepsilon, \#) = \emptyset$
$\delta(q_1, a, \varepsilon) = \{(q_1, A)\}$	$\delta(q_1, b, \varepsilon) = \emptyset$	$\delta(q_1, \varepsilon, \varepsilon) = \emptyset$
$\delta(q_2, a, A) = \emptyset$	$\delta(q_2, b, A) = \{(q_2, \varepsilon)\}$	$\delta(q_2, \varepsilon, A) = \emptyset$
$\delta(q_2, a, \#) = \emptyset$	$\delta(q_2, b, \#) = \emptyset$	$\delta(q_2, \varepsilon, \#) = \{(q_3, \varepsilon)\}$
$\delta(q_2, a, \varepsilon) = \emptyset$	$\delta(q_2, b, \varepsilon) = \emptyset$	$\delta(q_2, \varepsilon, \varepsilon) = \emptyset$

and $\delta(q_3, x, y) = \emptyset$ for all $x \in \{a, b, \varepsilon\}$, $y \in \{A, \#, \varepsilon\}$

Push-down Automata: Accepted Words

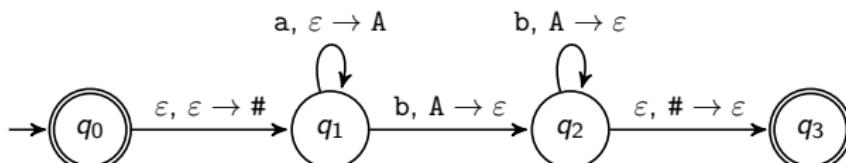
Definition

A PDA $M = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$ **accepts input w**

if it can be written as $w = w_1 w_2 \dots w_m$ where each $w_i \in \Sigma \cup \{\varepsilon\}$
and sequences of states $r_0, r_1, \dots, r_m \in Q$ and
strings $s_0, s_1, \dots, s_m \in \Gamma^*$ exist
that satisfy the following three conditions:

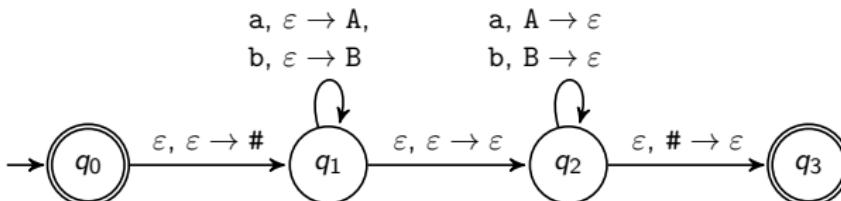
- 1 $r_0 = q_0$ and $s_0 = \varepsilon$
- 2 For $i = 0, \dots, m-1$, we have $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$,
where $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma \cup \{\varepsilon\}$ and
 $t \in \Gamma^*$.
- 3 $r_m \in F$

The strings s_i represent the sequence of stack contents.

Push-down Automaton for $\{a^n b^n \mid n \in \mathbb{N}_0\}$ 

The PDA accepts input aabb.

Acceptance: Exercise



Show that this PDA accepts input abba.

PDA: Recognized Language

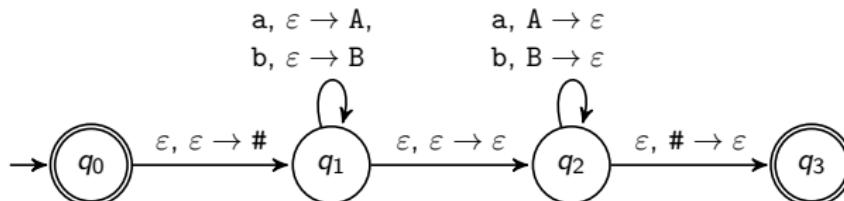
Definition (Language Recognized by an NFA)

Let M be a PDA with input alphabet Σ .

The **language recognized by M** is defined as

$$\mathcal{L}(M) = \{w \in \Sigma^* \mid w \text{ is accepted by } M\}.$$

Recognized Language: Exercise



What language does this PDA recognize?

PDAs Recognize Exactly the Context-free Languages

Theorem

A language L is context-free if and only if L is recognized by a push-down automaton.

PDAs: Exercise (if time)

Assume you want to have a possible transition from state q to state q' in your PDA that

- ▶ processes symbol c from the input word,
- ▶ can only be taken if the top stack symbol is A ,
- ▶ does **not** pop A off the stack, and
- ▶ pushes B .

What problem do you encounter? How can you work around it?

B7.4 Summary

Summary

- ▶ Every context-free language has a grammar in **Chomsky normal form**. All rules have form
 - ▶ $A \rightarrow BC$ with variables A, B, C (B, C not start variable), or
 - ▶ $A \rightarrow a$ with variable A , terminal symbol a , or
 - ▶ $S \rightarrow \epsilon$ with start variable S .
- ▶ Push-down automata (PDAs) extend NFAs with memory.
- ▶ The **languages recognized by PDAs** are exactly the **context-free languages**.